Программирование мк с нуля. AVR-программирование

Я не раз и не два говорил, что изучение МК надо начинать с ассемблера. Этому был посвящен целый курс на сайте (правда он не очень последовательный, но постепенно я его причесываю до адекватного вида) . Да, это сложно, результат будет не в первый день, но зато ты научишься понимать что происходит у тебя в контроллере. Будешь знать как это работает, а не по обезьяньий копировать чужие исходники и пытаться понять почему оно вдруг перестало работать. Кроме того, Си намного проще натворить быдлокода, который вылезет вилами в самый неподходящий момент.

К сожалению все хотят результат немедленно. Поэтому я решил пойти с другой стороны — сделать обучалку по Си, но с показом его нижнего белья. Хороший программист-эмбеддер всегда крепко держит свою железку за шкварник, не давая ей ни шагу ступить без разрешения. Так что будет вначале Си код, потом то что родил компилятор и как все это работает на самом деле:)

С другой стороны у Си сильная сторона это переносимость кода. Если, конечно, писать все правильно. Разделяя алгоритмы работы и их железные реализации в разные части проекта. Тогда для переноса алгоритма в другой МК достаточно будет переписать только интерфейсный слой, где прописано все обращение к железу, а весь рабочий код оставить как есть. И, конечно же, читаемость. Сишный исходник проще понять с первого взгляда (хотя.. мне, например, уже пофигу на что фтыкать — хоть си, хоть асм:)), но, опять же, если правильно все написать. Этим моментам я тоже буду уделять внимание.

В качестве подопытной железки на которой будет ставиться львинная доля всех примеров будет моя отладочная плата .

Первая программа на Си для AVR

Выбор компилятора и установка среды
Для AVR существует множество разных компиляторов Си:
В первую очередь это IAR AVR C — почти однозначно признается лучшим компилятором для AVR, т.к. сам контроллер создавался тесном сотрудничистве Atmel и спецов из IAR. Но за все приходится платить. И этот компилятор мало того, что является дорогущим коммерческим софтом, так еще обладает такой прорвой настроек, что просто взять и скомпилить в нем это надо постраться. У меня с ним правда не срослось дружбы, проект загнивал на странных ошибках на этапе линковки (позже выяснил, что это был кривой кряк).

Вторым идет WinAVR GCC — мощный оптимизирующий компилятор. Полный опенсорц, кроссплатформенный, в общем, все радости жизни. Еще он отлично интегрируется в AVR Studio позволяя вести отладку прямо там, что адски удобно. В общем, я выбрал его.

Также есть CodeVision AVR C — очень популярный компилятор. Стал популярен в связи со своей простотой. Рабочую программу в нем получить можно уже через несколько минут — мастер стартового кода этом сильно способствует, штампуя стандартыне инициализации всяких уартов. Честно говоря, я как то с подозрением к нему отношусь — как то раз приходилось дизасмить прогу написаную этим компилером, каша какая то а не код получалась. Жуткое количество ненужных телодвижений и операций, что выливалось в неслабый обьем кода и медленное быстродействие. Впрочем, возможно тут была ошибка в ДНК писавшего исходную прошивку. Плюс он хочет денег. Не так много как IAR, но ощутимо. А в деморежиме дает писать не более чем 2кб кода.
Кряк конечно есть, но если уж воровать, так миллион, в смысле IAR:)

Еще есть Image Craft AVR C и MicroC от микроэлектроники. Ни тем ни другим пользоваться не приходилось, но вот SWG очень уж нахваливает MicroPascal , мол жутко удобная среда программирования и библиотеки. Думаю MicroC не хуже будет, но тоже платный.

Как я уже сказал, я выбра WinAVR по трем причинам: халявный, интегрируется в AVR Studio и под него написана просто прорва готового кода на все случаи жизни.

Так что качай себе инсталяху WinAVR с и AVR Studio. Далее вначале ставится студия, потом, сверху, накатывается WinAVR и цепляется к студии в виде плагина. Настоятельно рекомендую ставить WinAVR по короткому пути, что то вроде C:\WinAVR тем самым ты избежишь кучи проблем с путями.

Cоздание проекта
Итак, студия поставлена, Си прикручен, пора бы и попробовать что нибудь запрограммировать. Начнем с простого, самого простого. Запускай студию, выбирай там новый проект, в качестве компилятора AVR GCC и вписывай название проекта.

Открывается рабочее поле с пустым *.c файлом.

Теперь не помешает настроить отображение путей в закладках студии. Для этого слазь по адресу:
Меню Tools — Options — General — FileTabs и выбираем в выпадающем списке «Filename Only». Иначе работать будет невозможно — на вкладке будет полный путь файла и на экране будет не более двух трех вкладок.

Настройка проекта
Вообще, классическим считается создание make файла в котором бы были описаны все зависимости. И это, наверное, правильно. Но мне, выросшему на полностью интегрированных IDE вроде uVision или AVR Studio этот подход является глубоко чуждым. Поэтому буду делать по своему, все средствами студии.

Тыкай в кнопку с шестеренкой.


Это настройки твоего проекта, а точнее настройки автоматической генерации make файла. На первой странице надо всего лишь вписать частоту на которой будет работать твой МК. Это зависит от фьюз битов, так что считаем что частота у нас 8000000Гц.
Также обрати внимание на строку оптимизации. Сейчас там стоит -Os это оптимизация по размеру. Пока оставь как есть, потом можешь попробовать поиграться с этим параметром. -O0 это отстутсвие оптимизации вообще.

Следующим шагом будет настройка путей. Первым делом добавь туда директорию твоего проекта — будешь туда подкладывать сторонние библиотеки. В списке появится путь «.\»

Make файл сгенерирован, его ты можешь поглядеть в папке default в своем проекте, просто пробегись глазами, посмотри что там есть.


На этом пока все. Жми везде ОК и переходи в исходник.

Постановка задачи
Чистый лист так и подмывает воплотить какую нибудь хитрую задумку, так как банальное мигание диодом уже не вставляет. Давай уж сразу брать быка за рога и реализуем связь с компом — это первым делом что я делаю.

Работать будет так:
При приходе по COM порту единички (код 0х31) будем зажигать диодик, а при приходе нуля (код 0х30) гасить. Причем сделано будет все на прерываниях, а фоновой задачей будет мигание другого диода. Простенько и со смыслом.

Собираем схему
Нам надо соединить модуль USB-USART конвертера с выводами USART микроконтроллера. Для этого берем перемычку из двух проводков и накидывам на штырьки крест накрест. То есть Rx контроллера соединяем с Tx конвертера, а Tx конвертера с Rx контроллера.

Получится, в итоге вот такая схема:


Подключение остальных выводов, питания, сброса не рассматриваю, оно стандартное

Пишем код

Сразу оговорюсь, что я не буду углубляться конкретно в описание самого языка Си. Для этого существует просто колоссальное количество материала, начиная от классики «Язык программирования Си» от K&R и заканчивая разными методичками.

Одна такая метода нашлась у меня в загашнике, я когда то именно по ней изучал этот язык. Там все кратко, понятно и по делу. Я ее постепенно верстаю и перестаскиваю на свой сайт.

Там правда еще не все главы перенесены, но, думаю, это ненадолго.

Вряд ли я опишу лучше, поэтому из учебного курса, вместо подробного разьяснения сишных тонкостей, я буду просто давать прямые линки на отдельные страницы этой методички.

Добавляем библиотеки.
Первым делом мы добавляем нужные библиотеки и заголовки с определениями. Ведь Си это универсальный язык и ему надо обьяснить что мы работаем именно с AVR, так что вписывай в исходник строку:

1 #include

#include

Этот файл находится в папке WinAVR и в нем содержится описание всех регистров и портов контроллера. Причем там все хитро, с привязкой к конкретному контроллеру, который передается компилятором через make файл в параметре MCU и на основании этой переменной в твой проект подключается заголовочный файл с описанием адресов всех портов и регистров именно на этот контроллер. Во как! Без него тоже можно, но тогда ты не сможешь использовать символические имена регистров вроде SREG или UDR и придется помнить адрес каждого вроде «0xC1», а это голову сломать.

Сама же команда #include <имя файла> позволяет добавить в твой проект содержимое любого текстового файла, например, файл с описанием функций или кусок другого кода. А чтобы директива могла этот файл найти мы и указывали пути к нашему проекту (директория WinAVR там уже по дефолту прописана).

Главная функция.
Программа на языке Си вся состоит из функций. Они могут быть вложенными и вызываться друг из друга в любом порядке и разными способами. Каждая функция имеет три обязательных параметра:

  • Возвращаемое значение, например, sin(x) возвращает значение синуса икс. Как в математике, короче.
  • Передаваемые параметры, тот самый икс.
  • Тело функции.

Все значения передаваемые и возвращаемые обязаны быть какого либо типа, в зависимости от данных.

Любая программа на Си должна содержать функцию main как точку входа в главную прогрмму, иначе это нифига не Си:). По наличию main в чужом исходнике из миллиона файлов можно понять, что это и есть головная часть программы откуда начинается все. Вот и зададим:

1 2 3 4 5 int main(void ) { return 0 ; }

int main(void) { return 0; }

Все, первая простейшая программа написана, не беда что она ничего не делает, мы же только начали.

Разберем что же мы сделали.
int это тип данных которая функция main возвращает.

Конечно, в микроконтроллере main ничего вернуть в принципе не может и по идее должна быть void main(void) , но GCC изначально заточен на PC и там программа может вернуть значение операционной системе по завершении. Поэтому GCC на void main(void) ругается Warning’ом.

Это не ошибка, работать будет, но я не люблю варнинги.

void это тип данных которые мы передаем в функцию, в данном случае main также не может ничего принять извне, поэтом void — пустышка. Заглушка, применяется тогда когда не надо ничего передавать или возвращать.

Вот такие вот { } фигурные скобочки это программный блок, в данном случае тело функции main , там будет распологаться код.

return — это возвращаемое значение, которое функция main отдаст при завершении, поскольку у нас int, то есть число то вернуть мы должны число. Хотя это все равно не имеет смысла, т.к. на микроконтроллере из main нам выходить разве что в никуда. Я возвращаю нуль. Ибо нефиг. А компилятор обычно умный и на этот случай код не генерит.
Хотя, если извратиться, то из main на МК выйти можно — например вывалиться в секцию бутлоадера и исполнить ее, но тут уже потребуется низкоуровневое ковыряние прошивки, чтобы подправить адреса перехода. Ниже ты сам увидишь и поймешь как это сделать. Зачем? Вот это уже другой вопрос, в 99.999% случаев это нафиг не надо:)

Сделали, поехали дальше. Добавим переменную, она нам не особо нужна и без нужны вводить переменные не стоит, но мы же учимся. Если переменные добавляются внутри тела функции — то они локальные и существуют только в этой функции. Когда из функции выходишь эти переменные удаляются, а память ОЗУ отдается под более важные нужды. .

1 2 3 4 5 6 int main(void ) { unsigned char i; return 0 ; }

int main(void) { unsigned char i; return 0; }

unsigned значит беззнаковый. Дело в том, что в двоичном представлении у нас старший бит отводится под знак, а значит в один байт (char) влазит число +127/-128, но если знак отбросить то влезет уже от 0 до 255. Обычно знак не нужен. Так что unsigned .
i — это всего лишь имя переменной. Не более того.

Теперь надо проинициализировать порты и UART . Конечно, можно взять и подключить библиотеку и вызвать какой нибудь UartInit(9600); но тогда ты не узнаешь что же произошло на самом деле.

Делаем так:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 int main(void ) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider) ; UBRRH = HI(bauddivider) ; UCSRA = 0 ; UCSRB = 1 << RXEN| 1 << TXEN| 1 << RXCIE| 0 << TXCIE; UCSRC = 1 << URSEL| 1 << UCSZ0| 1 << UCSZ1; }

int main(void) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider); UBRRH = HI(bauddivider); UCSRA = 0; UCSRB = 1<

Страшна? На самом деле реалного кода тут всего пять последних строк. Все что #define это макроязык препроцессора. Почти та же ботва, что и в Ассемблере, но синтаксис несколько иной.

Они облегчат твои рутинные операции по вычислении нужных коэффициентов. В первой строке мы говорим что вместо XTAL можно смело подставлять 8000000, а L — указание типа, мол long — это тактовая частота процессора. То же самое baudrate — частота передачи данных по UART.

bauddivider уже сложней, вместо него будет подставлятся выражение вычисленное по формуле из двух предыдущих.
Ну, а LO и HI из этого результата возьмут младший и старший байты, т.к. в один байт оно явно может не влезть. В HI делается сдвиг икса (входной параметр макроса) восемь раз в вправо, в результате от него останется только старший байт. А в LO мы делаем побитовое И с числом 00FF, в результате останется только младший байт.

Так что все что сделано как #define можно смело выкинуть, а нужные числа подсчитать на калькуляторе и сразу же вписать их в строки UBBRL = …. и UBBRH = …..

Можно. Но! Делать этого КАТЕГОРИЧЕСКИ НЕЛЬЗЯ !

Работать будет и так и эдак, но у тебя в программе появятся так называемые магические числа — значения взятые непонятно откуда и непонятно зачем и если ты через пару лет откроешь такой проект то понять что это за значения будет чертовски трудно. Да и сейчас, захочешь ты изменить скорость, или поменяешь частоту кварца и все придется пересчитывать заново, а так поменял пару циферок в коде и все само. В общем, если не хочешь прослыть быдлокодером, то делай код таким, чтобы он легко читался, был понятен и легко модифицировался.

Дальше все просто:
Все эти «UBRRL и Со» это регистры конфигурации UART передатчика с помощью которого мы будем общаться с миром. И сейчас мы присвоили им нужные значения, настроив на нужную скорость и нужный режим.

Запись вида 1< Означает следующее: взять 1 и поставить ее на место RXEN в байте. RXEN это 4й бит регистра UCSRB , так что 1< образует двоичное число 00010000, TXEN — это 3й бит, а 1< даст 00001000. Одиночная «|» это побитовое ИЛИ , так что 00010000 | 00001000 = 00011000. Таким же образом выставляются и добавляются в общуюу кучу остальные необходимые биты конфигурации. В итоге, собраное число записывается в UCSRB. Подробней расписано в даташите на МК в разделе USART. Так что не отвлекаемся на технические детали.

Готово, пора бы посмотреть что получилось. Жми на компиляцию и запуск эмуляции (Ctrl+F7).

Отладка
Пробежали всякие прогресс бары, студия переменилась и возле входа в функцию main появилась желтая стрелочка. Это то где процессор в текущий момент, а симуляция на паузе.

Дело в том, что изначально, на самом деле, она стояла на строке UBRRL = LO(bauddivider); Ведь то что у нас в define это не код, а просто предварительные вычисления, вот симулятор немного и затупил. Но теперь он осознал, первая инструкция выполнена и если ты залезешь в дерево I/O View , в раздел USART и поглядишь там на байт UBBRL то увидишь, что там значение то уже есть! 0х33.

Сделай еще один шаг. Погляди как изменится содержимое другого регистра. Так прошагай их все, обрати внимание на то, что все указаные биты выставляются как я тебе и говорил, причем выставляются одновременно для всего байта. Дальше Return дело не пойдет — программа кончилась.

Вскрытие
Теперь сбрось симуляцию в ноль. Нажми там Reset (Shift+F5) . Открывай дизассемблированный листинг, сейчас ты увидишь что происходит в контроллере в самом деле. View -> Disassembler . И не ЫЫАААА!!! Ассемблер!!! УЖОС!!! А НАДО. Чтобы потом, когда что то пойдет не так, не тупил в код и не задавал ламерских вопросах на форумах, а сразу же лез в потроха и смотрел где у тебя затык. Ничего там страшного нет.

Вначале будет ботва из серии:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 +00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

Это таблица векторов прерываний. К ней мы еще вернемся, пока же просто посмотри и запомни, что она есть. Первая колонка — адрес ячейки флеша в которой лежит команда, вторая код команды третья мнемоника команды, та самая ассемблерная инструкция, третья операнды команды. Ну и автоматический коммент.
Так вот, если ты посмотришь, то тут сплошные переходы. А код команды JMP четырех байтный, в нем содержится адрес перехода, записанный задом наперед — младший байт по младшему адресу и код команды перехода 940C

0000002B: BE1F OUT 0x3F,R1 Out to I/O location

Запись этого нуля по адресу 0x3F, Если ты поглядишь в колонку I/O view, то ты увидишь что адрес 0x3F это адрес регистра SREG — флагового регистра контроллера. Т.е. мы обнуляем SREG, чтобы запустить программу на нулевых условиях.

1 2 3 4 +0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

Это загрузка указателя стека. Напрямую грузить в I/O регистры нельзя, только через промежуточный регистр. Поэтому сначала LDI в промежуточный, а потом оттуда OUT в I/O. О стеке я тоже еще расскажу подробней. Пока же знай, что это такая динамическая область памяти, висит в конце ОЗУ и хранит в себе адреса и промежуточные переменные. Вот сейчас мы указали на то, откуда у нас будет начинаться стек.

00000032: 940C0041 JMP 0x00000041 Jump

Прыжок в сааааамый конец программы, а там у нас запрет прерываний и зацикливание наглухо само на себя:

1 2 +00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

Это на случай непредвиденых обстоятельств, например выхода из функции main. Из такого зацикливания контроллер можно вывести либо аппаратным сбросом, либо, что вероятней, сбросом от сторожевой собаки — watchdog. Ну или, как я говорил выше, подправить это мест в хекс редакторе и ускакать куда нам душе угодно. Также обрати внимание на то, что бывает два типа переходов JMP и RJMP первый это прямой переход по адресу. Он занимает четыре байта и может сделать прямой переход по всей области памяти. Второй тип перехода — RJMP — относительный. Его команда занимает два байта, но переход он делает от текущего положения (адреса) на 1024 шага вперед или назад. И в его параметрах указывается смещение от текущей точки. Используется чаще, т.к. занимает в два раза меньше места во флеше, а длинные прееходы нужны редко.

1 +00000034: 940C0000 JMP 0x00000000 Jump

00000034: 940C0000 JMP 0x00000000 Jump

А это прыжок в самое начало кода. Перезагрузка своего рода. Можешь проверить, все вектора прыгают сюда. Из этого вывод — если ты сейчас разрешишь прерывания (они по дефолту запрещены) и у тебя прерывание пройзойдет, а обработчика нет, то будет программный сброс — программу кинет в самое начало.

Функция main. Все аналогично, даже можно и не описывать. Посмотри только что в регистры заносится уже вычисленное число. Препроцессор компилятора рулит!!! Так что никаких «магических» чисел!

1 2 3 4 5 6 7 8 9 10 11 12 <

00000036: E383 LDI R24,0x33 Load immediate +00000037: B989 OUT 0x09,R24 Out to I/O location 15: UBRRH = HI(bauddivider); +00000038: BC10 OUT 0x20,R1 Out to I/O location 16: UCSRA = 0; +00000039: B81B OUT 0x0B,R1 Out to I/O location 17: UCSRB = 1<

А вот тут косяк:

1 2 3 +0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

Спрашивается, для чего это компилятор добавляет такую ботву? А это не что иное, как Return 0, функцию то мы определили как int main(void) вот и просрали еще целых четыре байта не пойми на что:) А если сделать void main(void) то останется только RET, но появится варнинг, что мол у нас функция main ничего не возвращает. В общем, поступай как хошь:)

Сложно? Вроде бы нет. Пощелкай пошаговое исполнение в режиме дизассемблера и позырь как процессор выполняет отдельные инструкции, что при этом происходит с регистрами. Как происходит перемещение по командам и итоговое зацикливание.

Продолжение следует через пару дней …

Offtop:
Alexei78 сварганил плагинчик для файрфокса облегчающий навигацию по моему сайту и форуму.
Обсуждение и скачивание,

Для программирования AVR-микроконтроллеров существует немало средств разработки, однако, наиболее популярным, несомненно, следует признать пакет AVR Studio . Есть ряд причин такой популярности – это бесплатный пакет, разработанный фирмой ATMEL , он объединяет в себе текстовый редактор, ассемблер и симулятор. Пакет AVR Studio также используется совместно с аппаратными средствами отладки. В предлагаемой статье на примерах рассматриваются приемы работы с пакетом, что поможет начинающим программистам быстрее понять взаимодействие отдельных компонентов AVR Studio.

В следующей части статьи будет рассказано об отладке в среде AVR Studio программ, написанных на языке Си.

Пакет AVR Studio имеет солидную историю развития, что отражается в количестве существующих версий. В конце 2003 г. выпущена версия 4.08, которая имеет ряд полезных дополнений, а в начале 2004 г. вышло обновление (Service Pack 1), добавляющее поддержку AVR-контроллеров третьего поколения семейства ATmega48. Производство микросхем этого семейства намечено на вторую половину 2004 г.

Дистрибутив пакета и Service Pack можно загрузить с сайта www.atmel.com или получить компакт-диск с этим дистрибутивом у российского дистрибьютора фирмы ATMEL.

Работу пакета AVR Studio удобно рассматривать на какой-либо конкретной программе. В качестве илюстрации мы рассмотрим создание проекта для простейшей программы, которая будет по очереди зажигать два светодиода. Для определенности возьмем микросхему Atmega128 и подключим два светодиода в выводам 31 и 32 (это биты 6 и 7 порта D микросхемы ATmega128). AVR-контроллеры имеют мощные выходные каскады, типовой ток каждого вывода составляет 20 мА, максимальный ток вывода – 40 мА, причем это относится как к втекающему, так и к вытекающему току. В нашем примере светодиоды подключены анодами к выводам контроллера, а катоды через гасящие резисторы соединены с землей. Это означает, что светодиод зажигается подачей «1» на соответствующий вывод порта. Принципиальная схема приведена на рисунке. На схеме также показаны две кнопки, которые будут использованы в одной из программ.

Здесь уместно сделать небольшое отступление о выборе типа микросхемы для простейшего примера. Действительно, с первого взгляда может показаться странным, зачем нужен такой мощный кристалл в 64-выводном корпусе там, где хватит и 8-выводной микросхемы ATtiny12 ? Однако, в таком подходе есть логика. Известно, что в основе практически любого AVR-контроллера лежит одинаковое ядро. По большому счету, контроллеры различаются объемом памяти, количеством портов ввода/вывода и набором периферийных модулей. Особенности каждого конкретного контроллера – привязка логических имен регистров ввода/вывода к физическим адресам, адреса векторов прерываний, определения битов портов и т.д. описаны в файлах с расширением.inc, которые входят в состав пакета AVR Studio. Следовательно, используя конкретный тип кристалла, можно отлаживать программу как собственно для него, так и для любого младшего кристалла. Далее, если использовать в качестве отладочного самый старший кристалл, на сегодня это ATmega128, можно отлаживать программу практически для любого AVR-контроллера, надо просто не использовать аппаратные ресурсы, которые отсутствуют у целевого микроконтроллера. Таким образом, например, можно отлаживать на ATmega128 программу, которая будет выполняться на ATtiny13 . При этом исходный код останется практически тем же, изменится лишь имя подключаемого файла с 128def.inc на tn13def.inc. У такого подхода также есть свои преимущества. Например, «лишние» порты ввода/вывода можно использовать для подключения ЖК-индикатора , на который можно выводить отладочную информацию. Или, воспользоваться внутрисхемным эмулятором, который подключается к JTAG-порту микросхемы ATmega128 (контроллер ATtiny13 такой порт не имеет). Таким образом, можно использовать единственную отладочную плату, на которой установлен «старший» AVR-контроллер, для отладки любых вновь разрабатываемых систем, естественно, базирующихся также на AVR-микроконтроллерах. Одна из таких плат называется AS-megaM. Именно она использовалась для создания примеров программ, приводимых в статье. Это универсальный одноплатный контроллер на базе микросхемы ATmega128, который содержит внешнее ОЗУ, два порта RS-232 , порт для подключения ЖК-индикатора, внутрисхемного программатора и эмулятора AT JTAG ICE . На плате также есть место для распайки микросхемы FLASH-ПЗУ серии АТ45 в корпусах TSOP32/40/48 и двухканального ЦАП серии AD5302/ AD5312/ AD5322 . Теперь, после объяснения причин использования AVR-монстра для зажигания пары сватодиодов, можно идти дальше.

При программировании в среде AVR Studio надо выполнить стандартную последовательность действий:

  • компиляция
  • Создание проекта начинается с выбора строки меню Project\New Project. В открывшемся окне “Create new Project” надо указать имя проекта, (в нашем случае – sample1) и имя файла инициализации. После нажатия кнопки “Next” открывается окно “Select debug platform and device”, где выбирается отладочная платформа (симулятор или эмулятор) и тип микроконтроллера.

    Можно выбрать один из предлагаемых внутрисхемных эмуляторов, заметим, что у каждого эмулятора свой список поддерживаемых микросхем. Для рассматриваемого примера мы выбираем в качестве отладочной платформы AVR Simulator и микросхему ATmega128. После нажатия кнопки “Finish” нашему взору предстают собственно рабочие окна пакета AVR Studio, пока пустые. Следует в правое окно поместить исходный текст программы. Это можно сделать двумя способами, либо набрать весь текст непосредственно в окне редактора, либо загрузить уже существующий файл. Ниже приведен полный текст простейшей программы с комментариями.

    ; Пример «Управление светодиодами» ; написан для отладочной платы AS-MegaM ; Частота задающего генератора 7,37 МГц; светодиоды подключены к выводам PD6 и PD7 и через резисторы - на общий провод. ; подключение файла описания ввода-вывода микросхемы ATmega128 .include "m128def.inc" ; начало программы begin: ; первая операция - инициализация стека; если этого не сделать, то вызов подпрограммы или прерывания; не вернет управление обратно; указатель на конец стека устанавливается на последний адрес внутреннего ОЗУ - RAMEND ldi r16,low(RAMEND) out spl,r16 ldi r16,high(RAMEND) out sph,r16 ; для того, чтобы управлять светодиодами, подключенными к выводам PD6 и PD7, ; необходимо объявить эти выводы выходными. ; для этого нужно записать "1" в соответствующие биты регистра DDRD (DataDiRection) ldi r16,(1<<6) | (1<<7) out DDRD,r16 ; основной цикл программы loop: ldi r16,(1<<6) ; светится один светодиод out PORTD,r16 rcall delay ; задержка ldi r16,(1<<7) ; светится второй светодиод out PORTD,r16 rcall delay ; задержка rjmp loop ; повторение цикла; процедура задержки; примерно полсекунды при частоте 7,37 МГц; три пустых вложенных цикла соответственно delay: ldi r16,30 ; 30 delay1: ldi r17,200 ; 200 delay2: ldi r18,200 ; и еще 200 итераций delay3: dec r18 brne delay3 dec r17 brne delay2 dec r16 brne delay1 ret ; возврат в главную программу

    Проект может состоять из нескольких файлов, при этом один файл назначается основным. Все операции удобно производить, используя контекстную кнопку мыши. После подключения исходного файла окна имеют следующий вид.

    Компиляция проекта производится командой \Project\Build или нажатием кнопки F7. Процесс компиляции отображается в окне “Output”. Это окно можно «вытащить» командой \View\Output.

    В принципе, мы уже получили выходной файл в формате.hex, который уже можно загружать в микросхему и наблюдать перемигивание светодиодов. Однако, цель статьи – показать полный цикл работы в среде AVR Studio, поэтому мы переходим к стадии отладки. Это делается командой \Debug\Start Debugging.

    Теперь устанавливаем в окне “Simulator Options” частоту кварца 7,3728 МГц для точного измерения времени выполнения программы.

    Остальные опции следует оставить без изменения. Теперь можно выполнять программу в пошаговом режиме при помощи мыши или кнопки F11.

    Пакет AVR Studio содержит мощные средства для просмотра и редактирования состояния внутренних регистров и портов ввода/вывода отлаживаемого микроконтроллера, а также время, выполнения программы. Доступ к ним осуществляется через окно “I/O”.

    На самом деле, количество информации, доступное через окна просмотра пакета AVR Studio настолько велико, что для получения максимального комфорта нужно использовать компьютер в двухмониторной конфигурации.

    Для отладки нашего примера, чтобы получить доступ к битам порта D, надо раскрыть строку I/O ATMEGA128 и затем строку PORTD. Теперь видны все три регистра этого порта, PORTD, DDRD и PIND. Чтобы увидеть поля Value, Bits и Address, придется расширить правую границу окна, потеснив при этом окно с исходным текстом программы.

    Теперь, проходя программу в пошаговом режиме, можно видеть изменение текущих состояний этих регистров в поле Bits. Есть возможность оперативного изменения состояния любого бита регистров порта, причем это можно делать либо записью нового кода в поле Value, либо непосредственно, щелкнув мышью на нужном бите регистра.

    Для самостоятельных упражнений, предлагается следующая программа, которая отличается от предыдущей тем, что зажиганием светодиодов управляют две кнопки.

    ; Пример «Управление светодиодами от кнопок» ; написан для отладочной платы AS-MegaM ; светодиоды подключены к выводам PD6 и PD7 и через резисторы - на общий провод. ; кнопки - на PE4 и PE5 .include "m128def.inc" ; основная программа begin: ; инициализация стека ldi r16,low(RAMEND) out spl,r16 ldi r16,high(RAMEND) out sph,r16 ; инициализация светодиодов ldi r16,(1<<6) | (1<<7) out DDRD,r16 ; инициализация выводов, к которым подключены кнопки (на вход) ; внутренние подтягивающие резисторы подключены; для этого в PORTE нужно установить соответствующие биты в единицы ldi r16,(1<<4) | (1<<5) out PORTE,r16 ; а в DDRE - в нули ldi r16,0 out DDRE,r16 ; бесконечный цикл forever: in r16,PINE ; теперь в r16 находится текущее "состояние" кнопок com r16 ; кнопка "нажимается" нулем, поэтому инвертируем регистр lsl r16 ; переносим биты 4,5 в позиции 6,7 lsl r16 ; и обновляем "показания" светодиодов andi r16,(1<<6) | (1<<7) out PORTD,r16 rjmp forever ; цикл выполняется бесконечно

    Таким образом, на примере простейших программ показаны некоторые возможности пакета AVR Studio. Надо понимать, что это лишь первое знакомство, позволяющее быстрее освоиться с базовыми командами пакета. Между тем, возможности рассматриваемого пакета намного шире. Например, здесь можно отлаживать программы написанные на языках высокого уровня. В частности, Си-компилятор фирмы ImageCraft пользуется отладчиком AVR Studio «как родным». Для этого при компиляции исходного кода надо установить опцию генерации выходного файла в формате, совместимом с AVR Studio. При этом появляется возможность производить отладку в исходных кодах.

    Еще одна из многих характеристик пакета AVR Studio - возможность подключения внешних программ. Например, для обеспечения вызова оболочки внутрисхемного программатора AS2 нужно выполнить несколько простых операций.

    В меню Tools главного окна AVR Studio надо выбрать пункт Customize;

    В окне Customize выбрать пункт Tools;

    Двойным нажатием кнопки мыши или нажав Insert на клавиатуре, добавить новую команду в список и назвать ее "Программатор AS2";

    Указать путь к исполняемому файлу программатора, введя его непосредственно в поле для ввода "Command", или нажав на кнопку "…" справа от этого поля;

    Теперь в меню Tools появился пункт "Программатор AS2".

    Средства пакета AVR Studio 4.08 позволяют подключать вспомогательные программы – plugins. Первый plugin для AVR Studio – это программа графического редактора, упрощающая процесс инициализации ЖК-индикатора, которым может непосредственно управлять AVR-контроллер ATmega169. Максимальный логический размер ЖК-индикатора составляет 100 сегментов, каждому элементу индикатора ставится в соответствие бит в специальном регистре контроллера. Чтобы упростить рутинную процедуру привязки определенных битов к каждому сегменту, можно использовать вышеупомянутую программу.

    Во время посещения «родины AVR» - норвежского офиса фирмы ATMEL, один из авторов статьи беседовал с Ларсом Квенилдом, руководителем группы программистов, которая создала и поддерживает пакет AVR Studio. Этот человек, классический программист, с бородой, в свитере и обутый в сандали на носки, рассказал о перспективах развития пакета. В следующую версию (4.09) - будет включен интерфейс для нового внутрисхемного эмулятора – JTAGICE mkII (он называется также AT JTAGICE2), который во второй половине года придет на смену AT JTAGICE. У этого эмулятора есть два существенных отличия. С одной стороны, добавлена поддержка нового однопроводного отладочного интерфейса для младших AVR-контроллеров, debugWIRE. Этот интерфейс интересен тем, что он не занимает для своей работы дополнительные выводы микроконтроллера, так как использует для обмена вывод Reset микроконтроллера! С другой стороны (можно понимать это выражение буквально), у эмулятора AT JTAGICE2 появится, наконец, интерфейс USB для связи с компьютером.

    Литература

    1. Материалы технического семинара AVR Technical Training. Atmel. Norway. December 2003.
    2. Николай Королев, Дмитрий Королев AVR-микроконтроллеры второго поколения: средcтва разработчика. // Компоненты и технологии, 2003 № 7
    3. AVR-микроконтроллеры второго поколения: новые аппаратные возможности // Компоненты и технологии. 2003. № 4 .
    4. Николай Королев, Дмитрий Королев. AVR-микроконтроллеры: большое в малом. //Схемотехника», 2001, №5
    5. Николай Королев, Дмитрий Королев. AVR-микроконтроллеры: программные средства // Компоненты и технологии, 2000. № 4 .
    6. Николай Королев. AVR: аппаратные средства разработчика // Компоненты и технологии, 1999 № 1
    7. Николай Королев. RISC- микроконтроллеры фирмы ATMEL //Chip-News 1998, №2
    8. Николай Королев, Дмитрий Королев AVR: новые 8-разрядные RISC-микроконтроллеры фирмы ATMEL //Микропроцессор Ревю, 1998, №1

    Как-то сразу потянуло давать советы по поводу выбора среды программирования для AVR контроллеров. Только не надо кидать в меня тапками. Я совсем чуть-чуть 🙂

    Языков программирования для микроконтроллеров много. Сред программирования так же не мало и сравнивать их между собой некорректно. Лучших языков программирования не существует. Значит, придется выбрать наиболее подходящие для Вас язык и среду программирования.

    Если Вы, в данный момент, стоите перед выбором, на чем начать работать, то вот Вам несколько рекомендаций.

    Прежний опыт программирования. Не стоит пренебрегать прежним опытом в программировании. Даже если это был Бейсик. Даже если это было давно в школе. Программирование как езда на велосипеде – стоит только начать и быстро вспоминаешь все забытое. Начните с Бейсика – освойтесть – позже будет проще выбрать что-то более подходящее для Ваших целей.

    Помощь окружения. Ваши друзья пишут на Паскале? Для Вас вопрос решен – пишите на Паскале! Вам всегда помогут советом, подкинут библиотек, дадут на изучение готовые проекты. Вобщем рады будут принять в свое сообщество. Если поступите наоборот — получите обратный результат. Друзья сишники заклюют Вас, решившего изучать Ассемблер. Помощи не ждите.

    Хорошая книга по программированию AVR очень здорово поможет. К сожалению их очень мало. Если Вам в руки попалась книга, и вы считаете что в ней очень доступно все расписано – попробуйте. Не советую учиться по электронным книгам, в крайнем случае, распечатайте. Очень неудобно переключаться между средой и текстом файла книги. Гораздо приятнее читая книгу тут же пробовать, не отвлекаясь на переключения, кроме того, на полях можно делать пометки, записывать возникшие идеи.

    Среда программирования попроще. Если есть на выбор несколько сред программирования Вашего языка – не сомневайтесь, выбирайте ту, что проще. Пусть она менее функциональна. Пусть она компилирует страшно раздутый код. Главное чтобы было просто начать работать. После того как Вы освоитесь в простой среде вы с легкостью перейдете на более продвинутую и «правильную» среду. И не слушайте тех, кто говорит, что вы потеряете больше времени – они не правы. Ученикам младших классов не задают читать «Войну и мир» им дают книги попроще – с картинками.

    Библиотеки. Наличие библиотек спорно для изучения языка. Конечно, позже они очень облегчат жизнь, но поначалу «Черные ящики»-библиотеки непонятны и не очень способствуют пониманию языка. С другой стороны облегчают чтение программы и позволяют новичку, не особо напрягаясь, строить сложные программы. Так что, их наличием особо не заморачивайтесь. По крайней мере, по началу.

    Эффективный код. Выбор среды программирования для изучения программирования только по тому, насколько эффективный код та компилит – плохая идея. Вам главное комфортно начать изучение – что там получается «на выходе» дело десятое. Конечно, позже можно над этим и поработать.

    Визарды. Любое устройство на борту кристалла нуждается в настройке при помощи портов. Процедура довольно муторная и даташиты обязательны. Кроме того, есть нюансы, в которые новичку не просто вкурить. Поэтому в среде очень желательно наличие визардов. Вызарды это автоматические настройщики SPI, I2C, USART и т.д. Чем больше устройств поддерживается, тем лучше. Выставляешь необходимые параметры периферии, а визард сам генерирует код, который обеспечит заданные параметры. Очень упрощает жизнь.


    Общие рекомендации такие – программирование на начальном этапе должно быть максимально простым (пусть даже примитивным). Среда программирования должна быть легка в освоении (так как Вам надо, для начала, освоить программирование а не тратить время на ковыряние в настройках). Желательно русифицирована. Также не помешает русский мануал и примеры программ. Желательна возможность прошивки кристалла из среды. Далее при освоении основ программирования можно переходить и на более сложные оболочки.


    Еще одна рекомендация, напоследок – работайте с реальным кристаллом. Не бойтесь его спалить. Нарабатывайте практический опыт. Работа с эмуляторами (например Proteus) хоть и освободит от возни с паяльником, но никогда не сможет дать то удовлетворение которое Вы получите от заработавшей программы, первых помигиваний светодиодом! Понимание того, что вы сделали своими руками реальную рабочую схему вселяет уверенность и стимул двигаться дальше!

    (Visited 7 377 times, 1 visits today)

    Принципиальная схема программатора на LPT порт показана на рисунке. В качестве шинного формирователя используйте микросхему 74AC 244 или 74HC244 (К1564АП5), 74LS244 (К555АП5) либо 74ALS244 (К1533АП5).

    Светодиод VD1 индицирует режим записи микроконтроллера,

    светодиод VD2 - чтения,

    светодиод VD3 - наличие питания схемы.

    Напряжение, необходимое для питания схема берёт с разъёма ISP, т.е. от программируемого устройства. Эта схема является переработанной схемой программатора STK200/300 (добавлены светодиоды для удобства работы), поэтому она совместима со всеми программами программаторов на PC, работающих со схемой STK200/300. Для работы с этим программатором используйтепрограмму CVAVR

    Программатор можно выполнить на печатной плате и поместить её в корпус разъёма LPT, как показано на рисунках:




    Для работы с программатором удобно использовать удлинитель LPT порта, который несложно изготовить самому (к примеру, из кабеля Centronix для принтера), главное "не жалеть" проводников для земли (18-25 ноги разъёма) или купить. Кабель между программатором и программируемой микросхемой не должен превышать 20-30 см.

    Здравствуйте, уважаемые Хабражители!

    В этой статье я хочу рассказать о том, как однажды решил начать программировать микроконтроллеры, что для этого понадобилось и что в итоге получилось.

    Тема микроконтроллеров меня заинтересовала очень давно, году этак в 2001. Но тогда достать программатор по месту жительства оказалось проблематично, а о покупке через Интернет и речи не было. Пришлось отложить это дело до лучших времен. И вот, в один прекрасный день я обнаружил, что лучшие времена пришли не выходя из дома можно купить все, что мне было нужно. Решил попробовать. Итак, что нам понадобится:

    1. Программатор
    На рынке предлагается много вариантов - от самых дешевых ISP (In-System Programming) программаторов за несколько долларов, до мощных программаторов-отладчиков за пару сотен. Не имея большого опыта в этом деле, для начала я решил попробовать один из самых простых и дешевых - USBasp. Купил в свое время на eBay за $12, сейчас можно найти даже за $3-4. На самом деле это китайская версия программатора от Thomas Fischl . Что могу сказать про него? Только одно - он работает. К тому же поддерживает достаточно много AVR контроллеров серий ATmega и ATtiny. Под Linux не требует драйвера.

    Для прошивки надо соединить выходы программатора VCC, GND, RESET, SCK, MOSI, MISO с соответствующими выходами микроконтроллера. Для простоты я собрал вспомогательную схему прямо на макетной плате:

    Слева на плате - тот самый микроконтроллер, который мы собираемся прошивать.

    2. Микроконтроллер
    С выбором микроконтроллера я особо не заморачивался и взял ATmega8 от Atmel - 23 пина ввода/вывода, два 8-битных таймера, один 16-битный, частота - до 16 Мгц, маленькое потребление (1-3.6 мА), дешевый ($2). В общем, для начала - более чем достаточно.

    Под Linux для компиляции и загрузки прошивки на контроллер отлично работает связка avr-gcc + avrdude. Установка тривиальная. Следуя инструкции , можно за несколько минут установить все необходимое ПО. Единственный ньюанс, на который следует обратить внимание - avrdude (ПО для записи на контроллер) может потребовать права супер-пользователя для доступа к программатору. Выход - запустить через sudo (не очень хорошая идея), либо прописать специальные udev права. Синтаксис может отличаться в разных версиях ОС, но в моем случае (Linux Mint 15) сработало добавление следующего правила в файл /etc/udev/rules.d/41-atmega.rules:

    # USBasp programmer SUBSYSTEM=="usb", ATTR{idVendor}=="16c0", ATTR{idProduct}=="05dc", GROUP="plugdev", MODE="0666"

    После этого, естественно, необходим перезапуск сервиса
    service udev restart
    Компилировать и прошивать без проблем можно прямо из командной строки (кто бы сомневался), но если проектов много, то удобнее поставить плагин и делать все прямо из среды Eclipse.

    Под Windows придется поставить драйвер. В остальном проблем нет. Ради научного интереса попробовал связку AVR Studio + eXtreme Burner в Windows. Опять-таки, все работает на ура.

    Начинаем программировать

    Программировать AVR контроллеры можно как на ассемблере (AVR assembler), так и на Си. Тут, думаю, каждый должен сделать свой выбор сам в зависимости от конкретной задачи и своих предпочтений. Лично я в первую очередь начал ковырять ассемблер. При программировании на ассемблере архитектура устройства становится понятнее и появляется ощущение, что копаешься непосредственно во внутренностях контроллера. К тому же полагаю, что в особенно критических по размеру и производительности программах знание ассемблера может очень пригодиться. После ознакомления с AVR ассемблером я переполз на Си.

    После знакомства с архитектурой и основными принципами, решил собрать что-то полезное и интересное. Тут мне помогла дочурка, она занимается шахматами и в один прекрасный вечер заявила, что хочет иметь часы-таймер для партий на время. БАЦ! Вот она - идея первого проекта! Можно было конечно заказать их на том же eBay, но захотелось сделать свои собственные часы, с блэк… эээ… с индикаторами и кнопочками. Сказано - сделано!

    В качестве дисплея решено было использовать два 7-сегментных диодных индикатора. Для управления достаточно было 5 кнопок - “Игрок 1” , “Игрок 2” , “Сброс” , “Настройка” и “Пауза” . Ну и не забываем про звуковую индикацию окончания игры. Вроде все. На рисунке ниже представлена общая схема подключения микроконтроллера к индикаторам и кнопкам. Она понадобится нам при разборе исходного кода программы:

    Разбор полета

    Начнем, как и положено, с точки входа программы - функции main . На самом деле ничего примечательного в ней нет - настройка портов, инициализация данных и бесконечный цикл обработки нажатий кнопок. Ну и вызов sei() - разрешение обработки прерываний, о них немного позже.

    Int main(void) { init_io(); init_data(); sound_off(); sei(); while(1) { handle_buttons(); } return 0; }
    Рассмотрим каждую функцию в отдельности.

    Void init_io() { // set output DDRB = 0xFF; DDRD = 0xFF; // set input DDRC = 0b11100000; // pull-up resistors PORTC |= 0b00011111; // timer interrupts TIMSK = (1<

    Настройка портов ввода/вывода происходит очень просто - в регистр DDRx (где x - буква, обозначающая порт) записивается число, каждый бит которого означает, будет ли соответствующий пин устройством ввода (соответствует 0) либо вывода (соответствует 1). Таким образом, заслав в DDRB и DDRD число 0xFF, мы сделали B и D портами вывода. Соответственно, команда DDRC = 0b11100000; превращает первые 5 пинов порта C во входные пины, а оставшиеся - в выходные. Команда PORTC |= 0b00011111; включает внутренние подтягивающие резисторы на 5 входах контроллера. Согласно схеме, к этим входам подключены кнопки, которые при нажатии замкнут их на землю. Таким образом контроллер понимает, что кнопка нажата.

    Далее следует настройка двух таймеров, Timer0 и Timer1. Первый мы используем для обновления индикаторов, а второй - для обратного отсчета времени, предварительно настроив его на срабатывание каждую секунду. Подробное описание всех констант и метода настройки таймера на определенноый интервал можно найти в документации к ATmega8.

    Обработка прерываний

    ISR (TIMER0_OVF_vect) { display(); if (_buzzer > 0) { _buzzer--; if (_buzzer == 0) sound_off(); } } ISR(TIMER1_COMPA_vect) { if (ActiveTimer == 1 && Timer1 > 0) { Timer1--; if (Timer1 == 0) process_timeoff(); } if (ActiveTimer == 2 && Timer2 > 0) { Timer2--; if (Timer2 == 0) process_timeoff(); } }

    При срабатывании таймера управление передается соответствующему обработчику прерывания. В нашем случае это обработчик TIMER0_OVF_vect, который вызывает процедуру вывода времени на индикаторы, и TIMER1_COMPA_vect, который обрабатывает обратный отсчет.

    Вывод на индикаторы

    Void display() { display_number((Timer1/60)/10, 0b00001000); _delay_ms(0.25); display_number((Timer1/60)%10, 0b00000100); _delay_ms(0.25); display_number((Timer1%60)/10, 0b00000010); _delay_ms(0.25); display_number((Timer1%60)%10, 0b00000001); _delay_ms(0.25); display_number((Timer2/60)/10, 0b10000000); _delay_ms(0.25); display_number((Timer2/60)%10, 0b01000000); _delay_ms(0.25); display_number((Timer2%60)/10, 0b00100000); _delay_ms(0.25); display_number((Timer2%60)%10, 0b00010000); _delay_ms(0.25); PORTD = 0; } void display_number(int number, int mask) { PORTB = number_mask(number); PORTD = mask; }

    Функция display использует метод динамической индикации. Дело в том, что каждый отдельно взятый индикатор имеет 9 контактов (7 для управления сегментами, 1 для точки и 1 для питания). Для управления 4 цифрами понадобилось бы 36 контактов. Слишком расточительно. Поэтому вывод разрядов на индикатор с несколькими цифрами организован по следующему принципу:

    Напряжение поочередно подается на каждый из общих контактов, что позволяет высветить на соответствующем индикаторе нужную цифру при помощи одних и тех же 8 управляющих контактов. При достаточно высокой частоте вывода это выглядит для глаза как статическая картинка. Именно поэтому все 8 питающих контактов обоих индикаторов на схеме подключены к 8 выходам порта D, а 16 управляющих сегментами контактов соединены попарно и подключены к 8 выходам порта B. Таким образом, функция display с задержкой в 0.25 мс попеременно выводит нужную цифру на каждый из индикаторов. Под конец отключаются все выходы, подающие напряжение на индикаторы (команда PORTD = 0;). Если этого не сделать, то последняя выводимая цифра будет продолжать гореть до следующего вызова функции display, что приведет к ее более яркому свечению по сравнению с остальными.

    Обработка нажатий

    Void handle_buttons() { handle_button(KEY_SETUP); handle_button(KEY_RESET); handle_button(KEY_PAUSE); handle_button(KEY_PLAYER1); handle_button(KEY_PLAYER2); } void handle_button(int key) { int bit; switch (key) { case KEY_SETUP: bit = SETUP_BIT; break; case KEY_RESET: bit = RESET_BIT; break; case KEY_PAUSE: bit = PAUSE_BIT; break; case KEY_PLAYER1: bit = PLAYER1_BIT; break; case KEY_PLAYER2: bit = PLAYER2_BIT; break; default: return; } if (bit_is_clear(BUTTON_PIN, bit)) { if (_pressed == 0) { _delay_ms(DEBOUNCE_TIME); if (bit_is_clear(BUTTON_PIN, bit)) { _pressed |= key; // key action switch (key) { case KEY_SETUP: process_setup(); break; case KEY_RESET: process_reset(); break; case KEY_PAUSE: process_pause(); break; case KEY_PLAYER1: process_player1(); break; case KEY_PLAYER2: process_player2(); break; } sound_on(15); } } } else { _pressed &= ~key; } }

    Эта функция по очереди опрашивает все 5 кнопок и обрабатывает нажатие, если таковое случилось. Нажатие регистрируется проверкой bit_is_clear(BUTTON_PIN, bit) , т.е. кнопка нажата в том случае, если соответствующий ей вход соединен с землей, что и произойдет, согласно схеме, при нажатии кнопки. Задержка длительностью DEBOUNCE_TIME и повторная проверка нужна во избежание множественных лишних срабатываний из-за дребезга контактов. Сохранение статуса нажатия в соответствующих битах переменной _pressed используется для исключения повторного срабатывания при длительном нажатии на кнопку.
    Функции обработки нажатий достаточно тривиальны и полагаю, что в дополнительных комментариях не нуждаются.

    Полный текст программы

    #define F_CPU 4000000UL #include #include #include #define DEBOUNCE_TIME 20 #define BUTTON_PIN PINC #define SETUP_BIT PC0 #define RESET_BIT PC1 #define PAUSE_BIT PC2 #define PLAYER1_BIT PC3 #define PLAYER2_BIT PC4 #define KEY_SETUP 0b00000001 #define KEY_RESET 0b00000010 #define KEY_PAUSE 0b00000100 #define KEY_PLAYER1 0b00001000 #define KEY_PLAYER2 0b00010000 volatile int ActiveTimer = 0; volatile int Timer1 = 0; volatile int Timer2 = 0; volatile int _buzzer = 0; volatile int _pressed = 0; // function declarations void init_io(); void init_data(); int number_mask(int num); void handle_buttons(); void handle_button(int key); void process_setup(); void process_reset(); void process_pause(); void process_timeoff(); void process_player1(); void process_player2(); void display(); void display_number(int mask, int number); void sound_on(int interval); void sound_off(); // interrupts ISR (TIMER0_OVF_vect) { display(); if (_buzzer > 0) { _buzzer--; if (_buzzer == 0) sound_off(); } } ISR(TIMER1_COMPA_vect) { if (ActiveTimer == 1 && Timer1 > 0) { Timer1--; if (Timer1 == 0) process_timeoff(); } if (ActiveTimer == 2 && Timer2 > 0) { Timer2--; if (Timer2 == 0) process_timeoff(); } } int main(void) { init_io(); init_data(); sound_off(); sei(); while(1) { handle_buttons(); } return 0; } void init_io() { // set output DDRB = 0xFF; DDRD = 0xFF; // set input DDRC = 0b11100000; // pull-up resistors PORTC |= 0b00011111; // timer interrupts TIMSK = (1< 5940 || Timer2 > 5940) { Timer1 = 0; Timer2 = 0; } } void process_reset() { init_data(); } void process_timeoff() { init_data(); sound_on(30); } void process_pause() { ActiveTimer = 0; } void process_player1() { ActiveTimer = 2; } void process_player2() { ActiveTimer = 1; } void handle_button(int key) { int bit; switch (key) { case KEY_SETUP: bit = SETUP_BIT; break; case KEY_RESET: bit = RESET_BIT; break; case KEY_PAUSE: bit = PAUSE_BIT; break; case KEY_PLAYER1: bit = PLAYER1_BIT; break; case KEY_PLAYER2: bit = PLAYER2_BIT; break; default: return; } if (bit_is_clear(BUTTON_PIN, bit)) { if (_pressed == 0) { _delay_ms(DEBOUNCE_TIME); if (bit_is_clear(BUTTON_PIN, bit)) { _pressed |= key; // key action switch (key) { case KEY_SETUP: process_setup(); break; case KEY_RESET: process_reset(); break; case KEY_PAUSE: process_pause(); break; case KEY_PLAYER1: process_player1(); break; case KEY_PLAYER2: process_player2(); break; } sound_on(15); } } } else { _pressed &= ~key; } } void handle_buttons() { handle_button(KEY_SETUP); handle_button(KEY_RESET); handle_button(KEY_PAUSE); handle_button(KEY_PLAYER1); handle_button(KEY_PLAYER2); } void display() { display_number((Timer1/60)/10, 0b00001000); _delay_ms(0.25); display_number((Timer1/60)%10, 0b00000100); _delay_ms(0.25); display_number((Timer1%60)/10, 0b00000010); _delay_ms(0.25); display_number((Timer1%60)%10, 0b00000001); _delay_ms(0.25); display_number((Timer2/60)/10, 0b10000000); _delay_ms(0.25); display_number((Timer2/60)%10, 0b01000000); _delay_ms(0.25); display_number((Timer2%60)/10, 0b00100000); _delay_ms(0.25); display_number((Timer2%60)%10, 0b00010000); _delay_ms(0.25); PORTD = 0; } void display_number(int number, int mask) { PORTB = number_mask(number); PORTD = mask; } void sound_on(int interval) { _buzzer = interval; // put buzzer pin high PORTC |= 0b00100000; } void sound_off() { // put buzzer pin low PORTC &= ~0b00100000; }

    Прототип был собран на макетной плате.