Разновидности блоков питания для пк и серверов. Блок питания – Устройство компьютера

В корпусе системного блока настольного персонального компьютера располагаются: материнская плата с платами расширения, приводы накопителей и блок питания. От типа корпуса системного блока зависят тип, размеры и размещение используемой системной платы, минимальная мощность блока питания и максимальное количество устанавливаемых приводов накопителей. Монтажные (установочные) места, или отсеки для накопителей могут быть двух типов - с внешним и внутренним доступом. Доступ к накопителям, смонтированным в установочные места последнего типа, может осуществляться только при открытой крышке корпуса системного блока.

В настоящее время используются два типоразмера накопителей: шириной 5,25 дюймов (приводы CD-ROM, некоторые жесткие диски) и 3,5 дюймов (дисководы, жесткие диски). Реальная ширина 5,25- и 3,5-дюймовых устройств несколько больше, чем 5,25 и 3,5 дюйма. Их название исторически обусловлено габаритами дисководов для 5,25- и 3,5-дюймовых дискет. Количество, расположение и типоразмер отсеков для накопителей во многом определяет потребительские качества корпуса компьютера.

К горизонтальным относятся корпуса типа desktop (настольный), small-footprint (низкопрофильный), slimline (тонкий, стройный) и (ultra) superslimline (сверхкомпактный). Системная плата в этих корпусах также располагается горизонтально. В корпусе типа desktop обычно два 5,25-дюймовых и один-два 3,5-дюймовых отсека с внешним доступом.

Корпуса с вертикально расположенной материнской платой напоминают по внешнему виду башню (по-английски башня - tower) и обычно представлены тремя разновидностями: mini-tower, midi-tower и big-tower, которые обычно отличаются друг от друга количеством 5,25-дюймовых отсеков с внешним доступом (2, 3, 4 и более), габаритами и мощностью установленного блока питания, а следовательно, возможностями установки дополнительных плат расширения и приводов накопителей.

Одним из наиболее распространенных корпусов для персонального компьютера является корпус типа mini-tower. Обычно он имеет по два 5,25-дюймовых и 3,5-дюймовых отсека с внешним доступом, два 3,5-дюймовых отсека с внутренним доступом и содержит блок питания мощностью 200 ватт. В корпусе типа mini-tower можно расположить стандартный набор накопителей и плат расширения. Более широкие возможности расширения обеспечивает корпус midi-tower (три 5,25 и два 3,5-дюймовых внешних и три-четыре 3,5-дюймовых внутренних отсека, более мощный блок питания). Корпуса типа big-tower используются для сетевых серверов, содержат один или несколько блоков питания с мощностью более 300 ватт и имеют самые широкие возможности расширения. В корпусах типа slim обычно установлен слабый источник питания (90-100 ватт), а также предусмотрено не более одного внутреннего и одного внешнего отсека, что делает модернизацию ПК в таком корпусе проблематичной.

Как правило, на корпусе системного блока располагаются несколько кнопок для управления компьютером (Reset, Turbo), светодиодные и цифровые индикаторы режимов работы (Turbo, Power, HDD, частота), замок для блокировки клавиатуры (Lock), встроенный динамик и выключатель питания (Power).

Корпуса различных фирм могут несколько отличаться по дизайну и габаритам.

Существуют специальные корпуса для мультимедиа-компьютеров, оснащенные стереоколонками и манипуляторами аудиовыхода. Для комфортной работы выпускаются корпуса с низким уровнем шума (low-noise), в которых применяются блоки питания с малошумящими вентиляторами.

Типоразмеры AT и ATX

Тип, внутренние размеры корпуса и применяемый блок питания зависят от используемой материнской платы. В настоящее время существует несколько несовместимых между собой типоразмеров корпусов - старые стандарты AT (для корпусов типа desktop и tower) и LPX (для корпусов типа slim) и предложенные Intel новые стандарты ATX (desktop и tower) и NLX (slim). Они отличаются как размерами и расположением материнской платы, так и номиналами напряжений, вырабатываемых источниками питания.

Для корпусов ATX характерен более легкий доступ к внутренним узлам компьютера, улучшенная вентиляция внутри корпуса, возможность установки большего числа полноразмерных плат расширения, расширенные возможности по управлению энергопотреблением. Этот стандарт может быть не особенно актуален для работы, но для разгона он просто незаменим. Не только потому, что охлаждение элементов стало лучше, но и потому, что стало проще поменять память или добраться до процессора. Хорошей матери нужен хороший корпус.

Какой корпус выбрать? Для начала вы должны для себя определить, нужно Вам удобство залезания в корпус или нет? Если нет, то Вам подойдет обычный корпус за 30$ с возможностью установки дополнительного вентилятора. Вы соберете компьютер, закроете его и больше этот корпус Вас мучить не будет.

Чем плохи такие корпуса? Во-первых очень тонкий металл, соответственно хуже экранирование и меньше механическая прочность. Если вы собираетесь купить Desktop и поставить на него монитор, то о дешевых корпусах можете забыть - он прогнется под весом 15" монитора, а 17" не выдержит вообще. Во-вторых, Вы будете резать руки об острые края, выламывая неподдающиеся заглушки. Чем дешевле корпус, тем менее он удобен для сборки. Блок питания нависнет над платой, винчестер грозно приблизится к памяти, шумная вертушка будет сводить Вас с ума ночами.

Фактор формы (как выбрать корпус).

Сотни лет философы спорили, что важнее - форма или содержание, и, наконец, сошлись на том, что эти категории находятся в диалектическом единстве (и, в то же время, в непрерывной борьбе, как отметил бы вождь мирового пролетариата). На компьютерном уровне это самое единство состоит в том, что «содержание» (системная плата с процессором и контроллерами) установлено в «форму» (корпус), и они должны друг другу соответствовать. А борьба проявляется в том, что постепенно меняются как технические (технологичность, вентиляция), так и эргономические (внешний вид, шумоизоляция и пр.) требования к конструкции корпуса и, соответственно, к конструкции системной платы.

Еще пару лет назад вариантов для настольных ПК практически не было - рынок SOHO был монополизирован платами и корпусами типа AT. Сейчас предлагаются два основных типа настольных ПК - AT и ATX. Так что имеет смысл подумать - какой из них выбрать для нового компьютера или при проведении модернизации?

Как известно, системный блок компьютера состоит из корпуса, в котором установлены источник питания, встроенные накопители (дисководы, CD-ROM), несколько кнопок и лампочек, маленький динамик («пищалка») и, конечно, основной элемент, ради которого все это собиралось - системная плата.

Основными типоразмерами (форм-факторами) системных плат для настольных ПК являются AT, ATX с разновидностями mini-ATX и micro-ATX, и NLX. Последний тип был представлен фирмой Intel в 1997 году как наиболее технологичный стандарт (в нем контроллеры устанавливаются параллельно системной плате через переходник, называемый riser card, что удобно при сборке и ремонте), но до сих пор NLX практически не получил распространения. Остальные типы плат активно конкурируют на рынке.

Что касается корпусов, то они также делятся по типоразмерам на AT и ATX с разновидностью micro-ATX. К каждому типу подходит свой источник питания, которые также называются AT или ATX. У этих источников разные возможности (ATX - умнее, понимает команды процессора, поэтому может, скажем, выключить питание при завершении работы ОС), и совершенно разные разъемы для подключения к системной плате.

Таким образом, отнюдь не каждая плата подойдет к тому или иному корпусу, и наоборот. В Таблице указаны размеры системных плат и их совместимость с корпусами и блоками питания.

Форм-фактор Длина, мм Ширина, мм Корпус Источник питания
AT до 270 220 AT, Baby AT AT, ATX*
ATX до 244 305 ATX ATX
mini-ATX до 208 284 ATX ATX
micro-ATX до 244 244 ATX, micro-ATX ATX

на некоторых, но далеко не на всех платах AT установлены дополнительные разъемы для подключения к источнику типа ATX

Как видно из таблицы, у каждого форм-фактора системных плат ширина постоянна, а длина может изменяться. Например, различные модели плат AT могут иметь размеры 250x220, 230x220 и т.п. Тем не менее, все платы одного типа подходят к соответствующим корпусам благодаря стандартному положению внешних разъемов и крепежных отверстий. Правда, в семействе ATX насчитывается аж целых десять стандартов на расположение внешних разъемов, из которых широко распространены три, поэтому производители корпусов ATX часто поставляют несколько различных декоративных планок для задней панели.

Кроме перечисленных в таблице типов корпусов встречаются еще и совмещенные AT/ATX, в которые можно установить любую системную плату. Однако они конструкционно сложнее и существенно дороже, и потому не находят широкого применения.

Форм-фактор AT появился при переходе с восьмиразрядных моделей ПК на шестнадцатиразрядные, то есть когда на смену IBM PC XT пришли IBM PC AT, в названии которых отразилось применение нового форм-фактора. Сначала большинство моделей были горизонтальными, «лежачими» (desktop), но постепенно «стоячий» вертикальный вариант (tower) полностью перехватил инициативу, и сегодня корпус desktop - большая редкость. Системные платы со второго по пятое поколение, то есть от 286SX и до моделей под Pentium, K6, M2, прекрасно помещались в AT, поэтому других форм-факторов для ПК не требовалось.

ATX появился позже, поэтому можно с уверенностью утверждать, что это более прогрессивный конструктив, в котором исправлены некоторые присущие AT недостатки и учтены новые, возросшие технические и технологические требования. Сначала модели ATX были существенно дороже AT, из-за чего не получали широкого распространения. Но постепенно ситуация выровнялась, и сегодня ATX не только активно конкурирует на рынке с AT, но и начинает его постепенно вытеснять. Приведу статистические данные о процентном соотношении выпускаемых моделей системных плат разного типа под процессоры пятого (Pentium, K6, M2 под разъем Socket7) и шестого (Pentium II/III под разъем Slot1/2 и Celeron, M3 в корпусе PPGA под разъем Socket370). Статистика набрана по данным справочника «Современная компьютерная техника», в котором содержится информация о более чем 800 современных моделях.

Socket 7 AT - 56% ATX - 30% m-ATX - 14%
Slot-1/2 14% 64% 22%
Socket-379 22% 34% 44%

Как видно, для каждого из трех основных классов процессоров (Pentium, PentiumII/III и Celeron) существует свой наиболее распространенный форм-фактор. И если для процессоров пятого поколения AT - безусловный лидер, то в шестом поколении его популярность существенно снизилась. Многие серьезные производители (в том числе Intel, Chaintech, SuperMicro, Tekram и другие) считают, что AT вообще не подходит для плат под Slot1, поэтому в их номенклатуре не ни одной системной платы AT для PentiumII/III. Лидером среди плат под Celeron является форм-фактор micro-ATX, однако это не значит, что для таких плат обязательно приобретать корпус micro-ATX: можно использовать и более универсальный ATX, в который помещаются все разновидности этого семейства.

Теперь рассмотрим основные отличия между форм-факторами. Что касается внешнего вида корпусов, разница почти незаметна, даже если поставить их рядом: стандартный ATX (mini-tower) всего на сантиметр выше, на два сантиметра шире и на три глубже, чем AT. Тем не менее, эта небольшая прибавка к размерам позволяет добиться важного преимущества: на платах ATX разъем Slot1 для процессора PentiumII/III ставится вдоль, а не поперек платы, что, наряду с увеличением внутреннего объема корпуса, существенно улучшает вентиляцию.

Источник питания ATX, в отличие от источника AT, имеет командный интерфейс, что позволяет реализовать все заложенные в современных платах функции управления питанием и энергосбережения (стандарт ACPI).

На системных платах AT стандартизованы положение разъема для клавиатуры и линейки слотов для подключения карт - контроллеров устройств. В ATX и micro-ATX к этому списку добавились разъемы для мыши, принтера, шины USB, COM-портов, миди/джойстика, а также аудио- и видеоустройств, если они интегрированы на системной плате. Это повышает надежность системы по сравнению с AT, где сигналы для большинства внешних устройств выводятся с платы на заднюю панель короткими кабелями-переходниками, а, как известно, разъемные соединения являются существенным источником отказов из-за плохого (окислившегося, отошедшего) контакта. Кроме того, переходники зачастую занимают на задней стенке позицию, отведенную для слота, что уменьшает возможное количество установленных контроллеров.

На платах ATX, в отличие от AT, для подключения клавиатуры и мыши используются миниатюрные разъемы типа PS/2. У них есть ряд недостатков: во-первых, они одинаковые и их можно перепутать, во-вторых, мышь PS/2 не следует пересоединять при включенном питании - это может вывести из строя микросхему в самой мыши или на системной плате. Правда, недостатки мыши PS/2 легко устранимы: любители переключений «на ходу» могут использовать в ATX обычную мышь, подсоединив ее через последовательный канал, как в AT. Но для многих важнее другое: мышь PS/2 не занимает COM-порта, поэтому оба установленных на системной плате последовательных канала остаются свободными для подключения внешних устройств. Все остальные типы разъемов, применяемых в ATX, точно такие же, как в AT.

Теперь о ценах. Сами системные платы ATX и micro-ATX если и дороже аналогичных по параметрам и качеству плат AT, то уже совсем не намного. Мыши и клавиатуры стоят практически одинаково. Несколько дороже сам корпус - за самый простой ATX придется отдать долларов на пять-десять больше, чем за AT.

Мы не можем здесь дать однозначный ответ на вопрос: какой же все-таки типоразмер подойдет именно Вам, и стоят ли преимущества форм-фактора ATX тех денег, которые нужно за него доплатить. По конкретной конфигурации такой ответ помогут найти продавцы в наших торговых залах. А главная задача этого обзора - показать, что в отличие от ситуации одно- или двухлетней давности, сейчас на рынке есть реальная конкуренция между AT и ATX и выбор, как говорится, за Вами.

Источник (или блок) питания обычно смонтирован и поставляется вместе с корпусом системного блока, для которого он предназначен. Мощность источника питания компьютера должна полностью и даже с некоторым запасом обеспечивать энергопотребление всех подключенных к нему устройств. Чем больше устройств может быть установлено в системный блок, тем большую мощность должен иметь блок питания. В среднем мощность блоков питания варьирует от 90 до 150 ватт для низкопрофильных и настольных ПК и до 200-330 ватт для mini-tower и big-tower. Некоторые из блоков работают в режиме малого потребления (70-75 ватт), удовлетворяющего требованиям программы Energy Star. В современных блоках используются малошумящие вентиляторы.

На корпусе типового блока питания IBM PC-совместимого компьютера, как правило, расположены один или два охлаждающих вентилятора, сетевой выключатель (или соединитель для него), переключатель напряжения сети (на 220 и 110 В), общий сетевой разъем, сетевой разъем для подключения монитора, кабели питания с разъемами для системной платы и накопителей. На некоторых блоках питания имеется также внешний патрон для плавкого предохранителя. Для подключения к системной плате обычно используются два шестиконтактных разъема (реже один общий). Для питания накопителей предназначены четырехконтактные разъемы. Данные разъемы отличаются по размеру: large style и small style. Если разъемов не хватает, можно использовать специальные Y-разветвители.

По вырабатываемым номиналам напряжения и конструктивным особенностям блоки питания делятся на блоки для AT-корпусов и блоки для ATX-корпусов. AT-блоки вырабатывают +5В, -5В, +12 и -12В постоянного тока, имеют механический выключатель и подключаются к материнской плате при помощи двух одинаковых шестиконтактных разъемов (при самостоятельном подключении их можно легко перепутать с самыми плачевными для материнской платы последствиями).

ATX-блоки, помимо перечисленных выше номиналов, вырабатывают также напряжение 3,3В и подключаются к материнской плате через 20-контактный разъем, исключающий возможность неправильной установки. Кроме того, ATX-блоки, как правило, не имеют механического выключателя. Будучи подключенными к электрической сети, они находятся в состоянии пониженного потребления (standby), из которого могут быть включены по нажатию электронного выключателя на корпусе, либо по программной команде в ответ на какое-либо внешнее событие. Например, это может быть команда по сети (эта функция называется wake on LAN) или телефонный звонок, принятый и обработанный модемом. Выключение в состояние standby также может быть выполнено программно.

Проблемы в электропитании

Статистика свидетельствует, что по причинам, связанным со сбоями в электросети, в 75% случаев происходит потеря информации и в 65% выходит из строя само электронное оборудование, поэтому стабильное электропитание компьютеров имеет особую важность. Существенным моментом при оборудовании офиса является правильная разводка линий электропитания (220 В). Все узлы персонального компьютера и подключенное к нему периферийное оборудование должны запитываться от одной фазы электросети. Шины должны быть выполнены радиально с одной общей точкой. Для отключения компьютерного оборудования должен использоваться отдельный щит с автоматами защиты и общим рубильником. Помимо полного отключения сетевого напряжения проблемы в электропитании компьютера могут возникать из-за его кратковременных провалов, перенапряжений, гармонических искажений, различных электромагнитных и радиочастотных шумов. Чтобы исключить подобные неприятности, следует воспользоваться специальными устройствами защиты.

Последствием внезапного отключения электропитания компьютера (независимо от его причины) может стать полная потеря данных в оперативной и кэш-памяти, а при работе в сетевой операционной системе вероятен крах таблиц размещения файлов на диске. В худшем случае может произойти повреждение самих электронных элементов. К таким же последствиям могут привести кратковременные питающего напряжения в течение долей секунды (Sags, или Brownout) и (подвижное во времени, но не периодическое) понижение питающего напряжения (Rolling Brownout). Иногда в сети возникает кратковременное повышение питающего напряжения на доли секунды (Surge) и импульсное повышение с амплитудой не менее 100% от номинального (Spike), которое может вывести из строя импульсные источники питания компьютера.

Под воздействием сильных электрических помех, порождаемых либо работой электрических машин (Electro Magnetic Interference, EMI), либо функционированием радиоизлучающих устройств (Radio Frequency Interference, RFI), форма синусоидального питающего напряжения может быть серьезно искажена, что ведет, как правило, к аппаратным сбоям (Glitch) и ошибкам при выполнении программ.

Для обеспечения бесперебойного электропитания компьютера применяются различные источники бесперебойного питания.

Простейшую защиту электропитания компьютера обычно обеспечивают так называемые ограничители перенапряжений. Эти устройства предохраняют питаемые узлы компьютера от различного рода выбросов и всплесков питающего напряжения электросети, а также радиочастотных шумов (см. Проблемы в электропитании).

Более высокий уровень защиты обеспечивают устройства нормализации, которые надежно питающее напряжение от всевозможных шумов и позволяют регулировать его в достаточно широком диапазоне. В том случае, когда в данных приборах используется технология феррорезонансного преобразования, они могут обеспечивать полную гальваническую развязку по частоте, не допуская проникновения высокочастотных шумов в цепи нагрузки.

Феррорезонансный трансформатор к тому же превосходно защищает от скачков напряжения, всплесков и выбросов в питающей сети. Большая часть повреждений системных, модемных и факс-модемных и сетевых плат является последствием импульсов высокого напряжения, попадающих в интерфейсный порт не по сети питания, а по кабелям данных. Чтобы избежать столь неприятных эффектов, необходимо использовать дополнительные устройства.

Обеспечить работу компьютера при полном отключении электропитания (Blackout) может только устройство, называемое ИБП (источник бесперебойного питания) или UPS (Uninterruptible Power Supply). Функционально такой прибор состоит из устройства подавления помех, зарядного устройства, батареи аккумуляторов и преобразователя напряжения (инвертора). На отечественном рынке наиболее известны ИБП компаний APC, Exide Electronics, MGE и ViewSonic.Все предлагаемые в настоящее время ИБП можно условно подразделить на несколько групп.

К самой немногочисленной группе относятся так называемые встраиваемые (Internal) UPS. Это самый дешевый и простой тип бесперебойных источников питания. Конструктивно данное устройство выглядит как отдельная плата расширения, вставляемая в соответствующий разъем на системной плате компьютера, либо как устройство для установки в свободный 5,25-дюймовый отсек накопителей.

Наиболее многочисленную группу ИБП составляют устройства, работающие по технологии On-Line (постоянно включенные) и Off-Line, или Standby (резервные). Подгруппа устройств, выполненных по технологии Line-Interactive (интерактивные ИБП), выглядит несколько обособленно, хотя чаще всего подобные устройства относят к типу Standby (или Hybrid) UPS. Постоянно включенные ИБП обеспечивают стабильное энергоснабжение подключенных устройств независимо от состояния электросети, в то время как резервные UPS переходят на режим работы от аккумуляторов только при отключении внешнего питающего напряжения и характеризуются поэтому неким конечным временем переключения. Одним из основных отличий интерактивных UPS является наличие узла Smart-Boost, который позволяет при кратковременных провалах напряжения не переходить на питание от аккумуляторов, а усиливать входное напряжение.

Для локальных вычислительных сетей большое значение имеет автоматический контроль состояния ИБП, подключенного к серверу. Для этой цели в сетевые операционные системы включаются специальные программы, а ИБП либо доукомплектовываются соответствующими платами контроля (UPS Monitoring Board), либо изначально обладают возможностью обмениваться данными с компьютером через последовательный порт.

Основные параметры ИБП

На выбор наиболее подходящей модели ИБП влияет множество параметров, наиболее значимые из которых - уровень защиты, мощность устройства, схема его работы, форма выходного напряжения и т. д.

Если защищаемое устройство не содержит данных, которые могут быть потеряны при выключении питания, или оно необходимо только от случая к случаю (например, бездисковый терминал, сканер, модем или принтер), то достаточным уровнем защиты для него будет качественный сетевой фильтр типа Pilot. Для компьютера, на котором выполняется важная работа, и тем более для сервера локальной сети наличие ИБП обязательно. Никогда не следует подключать через ИБП лазерный принтер из-за больших мощностей, потребляемых им при работе.

Обычно мощность устройства ИБП указывается в вольт-амперах, для приведения которой к мощности в ваттах ее следует разделить примерно на 1,5.

Рекомендуется, чтобы мощность ИБП по крайней мере на 15-20% превышала суммарную мощность подключенных к нему устройств. Для защиты простого офисного или домашнего ПК с 14-15-дюймовым монитором достаточно ИБП на 200-450 ВА, для мощного домашнего мультимедийного компьютера с 17-19-дюймовым монитором требуется ИБП на 400-750 ВА, а для защиты сервера локальной сети может потребоваться ИБП от 750 ВА до нескольких кВА.

Источник Off-Line переключается с питания от сети на питание от батарей при повышении параметров напряжения сети сверх допустимых границ, однако бессилен против распространенных в наших сетях случаев пониженного напряжения. В отечественных условиях наиболее эффективен источник Line-Interactive, содержащий стабилизатор напряжения и переходящий на батареи только тогда, когда напряжение сети вышло за все мыслимые границы (обычно диапазон напряжений 80-260 В еще считается рабочим). Существуют и источники On-Line, в которых входное напряжение преобразуется в постоянный ток батареи, а затем на его основе генерируется синусоидальное напряжение. Применяется обычно только для устройств, особо критичных к качеству питания, поскольку из-за постоянной работы от батарей имеет меньшие КПД и срок службы аккумуляторов и стоит существенно дороже.

Источники бесперебойного питания позволяют регулировать форму выходного напряжения от чисто синусоидальной (что требуется для работы на индуктивную нагрузку, например, трансформатору) до почти прямоугольной, что приемлемо для аппаратуры с импульсными блоками питания (компьютеры и периферия). Все ИБП используют аккумуляторные батареи с ограниченным сроком службы, зависящем от интенсивности и правильности их эксплуатации (этот срок обычно не превышает 2-3 лет). Некоторые ИБП позволяют включать обслуживаемые ими устройства при полном отсутствии напряжения во внешней сети (так называемый), что особенно важно при необходимости считать информацию с ПК.

Прилагаемое к ИБП ПО обычно позволяет вести мониторинг текущего состояния напряжения в сети, а также управлять остановкой и запуском операционной системы и приложений, а также выключением/включением компьютера при перепадах напряжения в сети.

К дополнительным возможностям ИБП относится работа в качестве сетевого фильтра на несколько дополнительных розеток, фильтрация бросков напряжения и помех в телефонных сетях и сетях Ethernet, а также расширенные возможности самоконтроля.

По материалам: «Большая Энциклопедия Кирилла и Мефодия», «Персональный компьютер от А дор Я», «Overclocking»

Не секрет, что для стабильной работы компьютера необходим надежный источник питания, а чтобы понять как выбрать блок питания для компьютера, необходимо определить для себя ряд критериев, по которым будет происходить отбор. Прежде всего мы говорим о мощности. Блок питания (БП) должен быть достаточно мощным, причем желательно выше нормы, чтобы оставался некий «запас прочности» на случай непредвиденной ситуации.

Особенно это касается игровых компьютеров, где основными потребителями являются такие компоненты, как: видеокарта и процессор. После проведения необходимо прибавить к полученному значению порядка 30%, это и будет тот самый запас, который не только повысит надежность вашего компьютера в дальнейшем, но и пригодится для будущих апгрейдов системы, и вам не придется покупать новый БП.

Если вы выбираете БП для офисного компьютера, то подойдут модели мощностью ± 400 Вт. Для компьютеров среднего ценового сегмента (средней производительности) - 450–500 Вт. Для всех остальных случаев 500–700 Вт будет более чем достаточно. Однако, если планируете поставить, например, две видеокарты в режиме SLI/CROSSFIRE, вполне возможно понадобятся уже БП до 1000 Вт. Опять же, каких-либо четких градаций ни я, ни кто-либо другой вам назвать не сможет, для этого и существуют подобные калькуляторы.

Не стоит также забывать о том, что далеко не все блоки питания указывают на упаковке реальную мощность. Поясню: она бывает номинальная и пиковая, пиковая обозначается английским «PEAK». Обычно в угоду маркетингу указывают как раз последнюю, которая может довольно сильно отличаться в большую сторону от номинальной (та, на которой БП может работать длительное время). Как это узнать? Да очень просто, на самом БП есть наклейка со всеми характеристиками, где, в том числе, есть и этот параметр. Выглядит это вот так:

Линии 12V

12-вольтовые линии, это те, по которым как раз и передается «львиная» доля мощности. Чем больше этих линий, тем лучше. Обычно это количество не выходит за рамки диапазона 1–6 линий. Но наибольший интерес представляет параметр «суммарный ток по линиям 12V», соответственно чем он больше, тем больше будет мощность, идущая от БП к основным потребителям: процессор, видеокарты, жесткие диски. Всю необходимую информацию можно поглядеть на этикетке, опять же.

Коррекция мощности

Очень важный параметр. Если точнее - коэффициент коррекции мощности (PFC). Есть несколько типов БП - с активным PFC (APFC), и с пассивным (PPFC). Коэффициент определяет - насколько эффективно работает БП, иными словами его КПД. У БП с пассивным PFC КПД не может быть больше 80%, а у БП с активным PFC он варьируется в пределах 80–95%. Оставшиеся проценты характеризуют потери энергии на нагрев в процессе преобразования. Если там, где вы живете электроэнергия стоит дорого, тогда рекомендую присмотреться к БП с активным PFC, бонусом к этому вы получите меньший нагрев самого БП, в итоге можно будет сэкономить на охлаждении. Кроме того, БП с активным PFC менее чувствительны к пониженному сетевому напряжению - если вдруг в сети напряжение станет меньше 220В, то БП не отключит питание компьютеру.

Сертификат 80 PLUS

Наличие данного сертификата как раз показывает, насколько эффективно БП может работать, то есть указывает на его КПД. Есть несколько видов данных сертификатов, самые распространенные: 80 plus bronze, silver, gold. Лучше выбирать БП с сертификатом не ниже 80 PLUS Bronze, поскольку все остальные стоят уже на порядок дороже. Еще, высокий КПД просто необходим на крупных предприятиях, где количество компьютеров исчисляется сотнями, в таких масштабах даже пусть небольшая экономия электроэнергии на каждом конкретном компьютере в итоге принесет ощутимые деньги.

Защита от короткого замыкания

Должна быть в обязательном порядке, во избежание…Также необходима защита от перегрузки - когда ток на выходе БП слишком большой, для того, чтобы не сгорели комплектующие компьютера. Защита от перенапряжения тоже не помешает - когда напряжение на выходе БП слишком велико, подача электроэнергии на материнскую плату отключается.

О «Безымянных» БП

К сожалению, в продаже еще до сих пор можно встретить так называемые «no name» блоки питания, то есть те, на которых не указан ни производитель, ни какие-либо характеристики. Часто они продаются даже без коробки - этакий «кот в мешке». Крайне не рекомендуется покупать такого вида БП, а соблазн есть, надо сказать, ибо зачастую они стоят на порядок дешевле (самые дешевые) других, представленных в магазине. Но дело-то даже не в наклейках. Ведь подавляющему большинству людей по большому счету абсолютно «по барабану» как выглядит их БП, ведь для того чтобы его разглядеть, нужно разобрать системный блок компьютера, а если быть точным - снять его боковую крышку, потому как далеко не у каждого на системнике присутствует прозрачное окно сбоку.

Нажмите, чтобы увеличить

«no name» БП опасны не этим, а тем из чего они состоят - некачественные, мягко говоря, компоненты, либо вообще отсутствие необходимых компонентов на плате (на фото выше это хорошо видно). Такой БП может перегореть в любой момент, независимо от того, на гарантии он еще, или уже нет. Кстати, гарантийный период у них такой же короткий, как теплые летние деньки в Сибири. Надеюсь, мне удалось отговорить вас от идеи покупки такого вот БП, если такая идея у вас закралась.

Пару слов о производителях

И тут мы плавно переходим к вопросу о том, а какой фирмы выбрать БП? Где гарантия, что не «no name» БП вдруг не развалится (взорвется/коротнет) точно таким же образом? Тут нужно смотреть уже на авторитет производителя. Но не стоит впадать в крайности, не нужно гнаться за самыми брендовыми БП из этого списка, ведь никто не хочет переплачивать за имя. Из недорогих, но качественных можно выделить: FSP, Chieftec, Cooler Master.

Стандарт ATX, разъемы

Этот стандарт определяет набор разъемов, необходимых для подключения оборудования к БП, так же, как и размер - 150x86x140 мм (ШхВхГ). Такими БП комплектуются большинство компьютеров на сегодня. Есть несколько версий этого стандарта: ATX 2.3, 2.31, 2.4 и др. К приобретению рекомендуются БП стандарта ATX не ниже 2.3 версии, поскольку начиная с этой версии появился 24-pin разъем, необходимый для питания всех существующих на сегодня современных материнских плат (до этого использовали 20-pin разъем), а также с этой версии КПД БП превысил порог в 80% и теперь может составлять почти 100%. Помимо вышеупомянутого разъема, есть еще несколько: питания видеокарты, процессора, жестких дисков, оптических приводов, кулеров. Надо ли говорить, что чем больше их будет - тем лучше.

Разъемы, кабели
24-х контактный разъем питания материнской платы. На любом блоке питания можно найти 1 такой разъем. При желании можно «отстегнуть» 4-pin кусочек от общего разъема для совместимости со старыми материнскими платами.
Разъем для питания центрального процессора 4-pin, некоторые процессоры требуют наличия двух таких разъемов.
Разъемы для дополнительного питания видеокарты 6-pin (бывают еще 8-pin). Обычно геймерские видеокарты требуют 2 таких разъема. Но если на БП их нет, не беспокойтесь, можно наколхозить при помощи переходника и 2 свободных MOLEX-разъемов.
15-контактный SATA-разъем для питания жестких дисков и оптических приводов. Обычно на одном проводе (шлейфе), идущем прямо из БП, расположены 2-3 таких разъема. То есть можно подключить 3 жестких диска к одному шлейфу сразу. Чем больше будет таких проводов, тем лучше. Если таких мало, то, опять же, на помощь приходит переходник с «всемогущего» MOLEX-а.
«Тот самый» 4-х контактный разъем MOLEX, который раньше повсеместно использовался взамен тому, что изображен на предыдущей картинке.
Старый - как планета «Земля», раньше использовался для дисководов гибких дисков - дискет.

Модульность

Существуют два типа БП - модульные и, соответственно, не модульные. Это значит, что в первом случае можно будет без проблем отсоединить все неиспользуемые в данный момент кабели, дабы освободить драгоценное место в системном блоке, тем самым улучшив охлаждение внутри него. Поток холодного воздуха будет беспрепятственно проходить через все комплектующие компьютера, равномерно охлаждая их, чего в случае с не модульной конструкцией довольно проблематично достичь. К тому же, освобождая внутреннее пространство от клубка проводов, вы добьетесь куда более эстетичного вида. В общем, эстетам эта функция точно придется по душе. Правда есть один нюанс, модульные БП стоят несколько дороже, а среди дешевых БП таких вообще не встретить.

Охлаждение

Поскольку БП (особенно игровых компьютеров) является нагруженным элементом, во время своей работы он выделяет большое количество тепла, соответственно необходимы вентиляторы активного охлаждения (кулер), которые будут обдувать внутренности БП. Когда-то давно на БП преимущественно устанавливались вентиляторы диаметром всего лишь 80 мм. По нынешним меркам это просто - «ни о чем». В подавляющем большинстве современных БП стоит кулер диаметром 120–140 мм, что не только способствует более эффективному охлаждению, но и снижает уровень шума. Тут можно провести следующую аналогию: чем больше внешний диаметр, к примеру, колеса, тем с меньшей скоростью его нужно будет вращать для достижения той же самой скорости на автомобиле. Поэтому правильней будет выбрать БП с максимально большим вентилятором из тех вариантов, которые вы заранее для себя присмотрели.

Итоги

А теперь, предлагаю подытожить все вышесказанное, для лучшего усвоения, так сказать. Итак, что нужно, чтобы правильно выбрать БП:

  1. Необходимо выбирать только качественные БП проверенных производителей, о «no name» БП лучше забыть.
  2. Обращайте внимание на реальную мощность, а не на ту, которая указана на упаковке с целью привлечь ваше внимание.
  3. Лучше, чтобы количество линий 12В было больше одной, но если она всего одна - не страшно. Гораздо важнее - чтобы львиная доля мощности БП передавалась именно по этим линиям, а не по каким-либо другим.
  4. БП желательно должен быть стандарта ATX 2.3 и иметь достаточное количество разъемов для подключения к ним комплектующим в дальнейшем.
  5. КПД БП должен быть больше 80%. БП в этом случае будет иметь сертификат 80 plus и активный PFC.
  6. Поинтересуйтесь, если ли у БП защита от короткого замыкания, перегрузки, перенапряжения.
  7. Выбирайте БП с кулером как можно большего диаметра, это понизит уровень шума. Кроме того, на современных БП количество оборотов вентилятора зависит от нагрузки на БП, то есть в простое БП вообще не будет слышно.
  8. (Не обязательно) Модели с отстегивающимися проводами гораздо удобнее в использовании, но и стоят дороже.
  9. Не советую покупать корпус системного блока, в котором уже стоит БП, так называемая «сборка». Обычно вместе с корпусом ставят слабые БП, либо по характеристикам они могут вас не устроить. Если есть возможность купить по отдельности, сделайте это. Кроме того, так даже выйдет несколько дешевле.

Системный блок – корпус компьютера, в котором находятся основные элементы персонального компьютера или сервера. Его задача в защите внутренней компоновки компьютера от воздействия извне и механических повреждений. Так же не маловажное назначение системного блока это поддержка нужной температуры внутри корпуса, так же для экранирования электромагнитного излучения внутренних частей компьютера.

Системные блоки бывают трех видов

1.Горизонтальные

2.Вертикальные

3.Стоечного исполнения (Сервера)

Состав системного блока:

1.Материнская плата, с установленной в ней: Процессором. ОЗУ (оперативно-запоминающее устройство). ПЗУ (Постоянно-запоминающее устройство). Платами расширения (Видеокарта, сетевой адаптер, звуковая карта).

2.Слоты для накопителей (жестких дисков, CD-ROM, DVD-ROM).

3.Блок питания.

4. И фронтальная панель, с индикаторами сети и работы жесткого диска, кнопками питания и сброса компьютера.

Блок питания ПК (БП) - электрический источник питания для обеспечения всех узлов и систем компьютера электроэнергией постоянного тока, а так же преобразования напряжения до нужного вольтажа и стабилизации напряжения (т.е. защита узлов ПК от скачков тока).


Мощность блоков питания варьируется от 50 Ватт (встраиваемые решения) до 1800 Ватт (Сервера и игровые станции).

Выходное напряжения БП: +/-5, +/-12, +3,3 Вольт в режиме работы компьютера и +5 и +3,3 Вольта в режиме ожидания (stand by).

Виды блоков питания:

1. AT (Advanced Technology) - устаревший выключатель питания находится на панели БП и находится в цепи электропитания ПК. Питание в режиме stand by не предусмотрено. И имеет следущую распиновку разъема AT:

2. ATX (Advanced Technology Extended) - современный блок питания, бывают 20-ти контактные, которые использовались до появления шины PCI-Express, а так же 24-х контактные, созданные для поддержки шин PCI-Express.

В случае с 20-ти контактным блоком питания последние 4 провода не используется (11, 12, 23, 24).

Другой термин используемый при определении блока питания - источник питания постоянного тока. Что из себя представляет данный механизм? Это своеобразное устройство, которое позволяет получить приемлемое стабильное постоянное напряжение. Ну или же просто постоянный ток. Когда, допустим, блок питания 24в постоянного тока выполняет работу и находится в режиме функции стабилизирования напряжения, он изначально способен поддерживать требуемый заданный показатель силы тока даже в случае и некоего изменения напряжения.

Особенности и классификация по мощности

Самым наиболее распространённым принципом классификации блоков питания является классификация по мощности. То есть то количество приборов, функционирующих от электричества, которое блок способен поддерживать.

Если устройство превышает допустимый предел потребляемого тока, то блок снижает потребление в сети, таким образом, предотвращая выход приборов из строя и поломку аппаратуры. Если вам необходимо обеспечить током электрическое оборудование , системы контроля, системы наблюдения (видеонаблюдения), а также всевозможных прочих устройств, которым нужно электричество и постоянное напряжение, то подобные блоки подойдут как нельзя лучше потому, что часто спроектированы для стационарного применения.

Главными выделяющимися моментами и интересующими нас качествам в подобных блоках являются:

  1. долгий срок службы, если не случается экстремальных ситуаций и воздействий
  2. высокий коэффициент полезного действия
  3. естественная конвекция воздуха
  4. подстройка выходного напряжения обладает потенциометром
  5. крепление возможно как на DIN-рейку, так и на стену
  6. большая надёжность устройства
  7. защита, которая срабатывает в случае перегрузки, перенапряжения
  8. качество исполнения - высокое

Типы блоков питания

Вообще, источники питания можно разделить на несколько типов:

  1. вторичный источник электропитания;
  2. трансформаторный или, как ещё такой называют, сетевой источник питания;
  3. импульсный источник питания.

Вторичный блок

Вкратце их различия можно описать так. Вторичный источник питания - своеобразное устройство, предназначаемое для обеспечения питания электроприбора энергией , при учёте напряжения и тока, путём преобразования электрической энергии других источников. Согласно правилам ГОСТа при определении в документах и бумагах слово «вторичный» благоразумно опускается.

Источник электропитания способен быть интегрированным в некую общую схему. Это либо в простых устройствах случается, либо в вариантах, когда падение напряжения на каких-то подводящих проводах, даже и незначительное, недопустимо - материнская плата какого-либо компьютера, например.

Встроенные преобразователи напряжения, которые она имеет, для питания процессора отвечают за это. Источник может также быть выполнен и расположен вообще в отдельном помещении. Распространённый пример для данного случая - расположение в отдельном помещении цеха питания . Источник может быть выполненным в виде некоего варианта модуля стойки электропитания, наиболее обычного блока, распространённого в ассоциациях и представлениях многих.

Часто и в наиболее распространённых аспектах вторичные блоки преобразуют энергию из сети переменного тока обычной промышленной частоты. Если мы рассмотри разные страны, в Российской Федерации она составляет 220 в и 50 Гц, а в Америке - 120 в и 60 Гц.

Трансформаторный блок

Трансформаторный блок питания является самым классическим. Ещё его называют сетевым. Обычно он состоит из автотрансформатора или, как вариант, понижающего трансформатора. Первичная обмотка при этом рассчитана на сетевое напряжение, после чего идёт выпрямитель.

Это устройство преобразует переменное напряжение в пульсирующее однонаправленное , говоря стандартным языком - постоянное. Выпрямитель же в данной кострукции состоит из одного диода в большинстве случаев. Или четырёх диодов, которые образуют из себя диодный мост. Бывает, что и используются более редкие, другие схемы, например, если мы взаимодействуем с выпрямителем с удвоением напряжения.

Когда выпрямитель уже на нужном месте, дальше идёт фильтр, сглаживающий колебания, именуемые проще пульсациями. Как стандартный вариант это устройство представляет из себя просто несколько большой по используемой ёмкости обычный конденсатор. В схеме, помимо вышеупомянутого, могут стоять защиты от КЗ, фильтры высокочастотных помех, а также всплесков (варисторы), стабилизаторы тока и напряжения.

Трансформаторные источники имеют свои достоинства. И относительно их можно сказать следующее. У них хорошо доступна элементная база. Они просты в своей уникальной конструкции. Их надёжность - один из их высших и важных приоритетов. Трансформаторные источники питания , тем не менее, имеют и свои минусы и о них можно рассказать следующее. Они слабостойки к броскам напряжения и пропаданию нейтрали, которая в итоговом случае ведёт к образованию фазного напряжения. У них большие габариты и вес, они металлоёмки. Для обеспечения стабильности им нужен стабилизатор, вносящий свои дополнительные потери.

Импульсный блок

Импульсные блоки питания - по сути являются инвенторной системой. Переменное входное напряжение первоначально выпрямляется в импульсных блоках.

Напряжение, что получено изначально, преобразуется в прямоугольные импульсы, частота у них повышена , а скважность же определённая, которые подаются на трансформатор или же на выходной фильтр нижних частот.

В случае когда импульсные блоки питания обладают гальванической развязкой прямо от питающей сети, то прямоугольные импульсы подаются на трансформатор, а если импульсные блоки питания не обладают гальванической развязкой, то на фильтр.

В импульсных блоках питаниях вполне могут применяться малогабаритные трансформаторы. Эффективность работы, как можно определить, с ростом частоты повышается и, соответственно, уменьшается требование к габаритам сердечника , его сечению, которое нужно для передачи достаточной необходимой эквивалентной мощности. Это всё объясняет. В наибольшем количестве случаев такой сердечник выполняется из ферромагнитных материалов и тем довольно-таки отличается от сердечников низкочастотных трансформаторов. Они выполняются из электротехнической стали.

Стабилизация напряжения в них поддерживается при посредстве обратной отрицательной связи. Отрицательная связь позволяет поддерживать искомое выходное напряжение, при этом и вне зависимости от колебаний входного, а также величины нагрузки , на относительно достаточно постоянном уровне. Если импульсный источник с гальванической развязкой, то наиболее популярным способом является использование одной из выходных обмоток или может использоваться оптрон. Так организуется обратная связь.

В зависимости от величины сигнала, которая зависит от выходного напряжения, скважность импульсов изменяется на выходе ШИМ-контроллера. При этом резистивный делитель напряжения используется, как правило, если развязка не требуется. Данный блок питания поддерживает нужное стабильное напряжение именно таким образом.

Импульсные источники не создают радиопомехи за счёт гармонических составляющих, в отличие от трансформаторных.

Блок питания предназначен для снабжения электрическим током всех компонентов компьютера. Он должен быть достаточно мощным и иметь небольшой запас, чтобы компьютер работал стабильно. Кроме того блок питания должен быть качественным, так как от него сильно зависит срок службы всех компонентов компьютера. Сэкономив 10-20$ на покупке качественного блока питания вы рискуете потерять системный блок стоимостью 200-1000$.

Мощность блока питания выбирается исходя из мощности компьютера, которая в основном зависит от энергопотребления процессора и видеокарты. Также нужно, чтобы блок питания имел сертификат хотя бы 80 Plus Standart. Оптимальными по соотношению цена/качество являются блоки питания Chieftec, Zalman и Thermaltake.

Для офисного компьютера (документы, интернет) вполне достаточно блока питания на 400 Вт, берите самый недорогой Chieftec или Zalman, не ошибетесь.
Блок питания Zalman LE II-ZM400

Для мультимедийного компьютера (фильмы, простые игры) и игрового компьютера начального класса (Core i3 или Ryzen 3 + GTX 1050 Ti) подойдет самый недорогой блок питания на 500-550 Вт от тех же Chieftec или Zalman, он будет иметь запас на случай установки более мощной видеокарты.
Блок питания Chieftec GPE-500S

Для игрового ПК среднего класса (Core i5 или Ryzen 5 + GTX 1060/1070 или RTX 2060) подойдет блок питания 600-650 Вт от Chieftec, если будет сертификат 80 Plus Bronze, то хорошо.
Блок питания Chieftec GPE-600S

Для мощного игрового или профессионального компьютера (Core i7 или Ryzen 7 + GTX 1080 или RTX 2070/2080) лучше взять блок питания мощностью 650-700 Вт от Chieftec или Thermaltake с сертификатом 80 Plus Bronze или Gold.
Блок питания Chieftec CPS-650S

2. Блок питания или корпус с блоком питания?

Если вы собираете профессиональный или мощный игровой компьютер, то блок питания рекомендуется выбирать отдельно. Если речь идет об офисном или обычном домашнем компьютере, то можно сэкономить и приобрести хороший корпус в комплекте с блоком питания, о чем речь пойдет .

3. Чем отличается хороший блок питания от плохого

Самые дешевые блоки питания (20-30$) по определению не могут быть хорошими, так как производители в этом случае экономят на всем чем только можно. Такие блоки питания имеют плохие радиаторы и много не распаянных элементов и перемычек на плате.

На этих местах должны быть конденсаторы и дроссели, предназначенные для сглаживания пульсаций напряжения. Именно из-за этих пульсаций происходит преждевременный выход их строя материнской платы, видеокарты, жесткого диска и других компонентов компьютера. Кроме того, такие блоки питания часто имеют маленькие радиаторы, из-за которых происходит перегрев и выход из строя самого блока питания.

Качественный блок питания имеет минимум не распаянных элементов и радиаторы большего размера, что можно заметить по плотности монтажа.

4. Производители блоков питания

Одни из лучших блоков питания производит компания SeaSonic, но они и самые дорогие.

Не так давно расширили ассортимент блоков питания хорошо известные бренды для энтузиастов Corsair и Zalman. Но самые бюджетные их модели имеют довольно слабую начинку.

Одними из лучших по соотношению цена/качество являются блоки питания AeroCool. В плотную к ним подбирается хорошо зарекомендовавший себя производитель кулеров DeepCool. Если вы не хотите переплачивать за дорогой бренд, но при этом получить качественный блок питания, обратите внимание на эти торговые марки.

Компания FSP производит блоки питания под разными брендами. Но дешевые БП под их собственной торговой маркой я бы не рекомендовал, они часто имеют короткие провода и мало разъемов. Топовые блоки питания FSP неплохи, но при этом стоят уже не дешевле именитых брендов.

Из тех брендов, которые известны в более узких кругах, можно отметить очень качественные и дорогие be quiet!, мощные и надежные Enermax, Fractal Design, чуть более дешевые, но качественные Cougar и хорошие, но недорогие HIPER как бюджетный вариант.

5. Мощность блока питания

Мощность – это основная характеристика блока питания. Мощность блока питания рассчитывается как сумма мощности всех компонентов компьютера + 30% (на пиковые нагрузки).

Для офисного компьютера вполне достаточно минимальной мощности блока питания 400 Ватт. Для мультимедийного компьютера (фильмы, простые игры) лучше взять блок питания на 500-550 Ватт, вдруг вы потом захотите поставить видеокарту. Для игрового компьютера с одной видеокартой желательно установить блок питания мощностью 600-650 Ватт. Для мощного игрового компьютера с несколькими видеокартами может потребоваться блок питания мощностью 750 Ватт и более.

5.1. Расчет мощности блока питания

  • Процессор 25-220 Ватт (уточняйте на сайте продавца или производителя)
  • Видеокарта 50-300 Ватт (уточняйте на сайте продавца или производителя)
  • Материнская плата начального класса 50 Ватт, среднего класса 75 Ватт, высокого класса 100 Ватт
  • Жесткий диск 12 Ватт
  • SSD-диск 5 Ватт
  • DVD-привод 35 Ватт
  • Модуль памяти 3 Ватт
  • Вентилятор 6 Ватт

Не забудьте добавить к сумме мощностей всех компонентов 30%, это обезопасит вас от неприятных ситуаций.

5.2. Программа для расчета мощности блока питания

Для более удобного расчета мощности блока питания существует прекрасная программа «Power Supply Calculator». Она также позволяет рассчитать необходимую мощность источника бесперебойного питания (ИБП или UPS).

Программа работает на всех версиях Windows с установленным «Microsoft .NET Framework» версии 3.5 или выше, который обычно уже установлен у большинства пользователей. Скачать программу «Power Supply Calculator» и если понадобится «Microsoft .NET Framework» вы можете в конце статьи в разделе « ».

6. Стандарт ATX

Современные блоки питания имеют стандарт ATX12V. Этот стандарт может быть нескольких версий. Современные блоки питания изготавливаются по стандартам ATX12V 2.3, 2.31, 2.4, которые и рекомендуются к приобретению.

7. Коррекция мощности

Современные блоки питания обладают функцией коррекции мощности (PFC), что позволяет им меньше потреблять энергии и меньше греться. Существует пассивная (PPFC) и активная (APFC) схема коррекции мощности. КПД блоков питания с пассивной коррекцией мощности достигает 70-75%, с активной – 80-95%. Рекомендую приобретать блоки питания с активной коррекцией мощности (APFC).

8. Сертификат 80 PLUS

Качественный блок питания обязательно должен иметь сертификат 80 PLUS. Эти сертификаты бывают разного уровня.

  • Certified, Standard – блоки питания начального класса
  • Bronze, Silver – блоки питания среднего класса
  • Gold – блоки питания высокого класса
  • Platinum, Titanium – топовые блоки питания

Чем выше уровень сертификата, тем выше качество стабилизации напряжения и другие параметры блока питания. Для офисного, мультимедийного или игрового компьютера среднего класса достаточно обычного сертификата. Для мощного игрового или профессионального компьютера желательно брать блок питания с бронзовым или серебряным сертификатом. Для компьютера с несколькими мощными видеокартами – с золотым или платиновым.

9. Размер вентилятора

Некоторые блоки питания все еще оснащаются вентилятором размером 80 мм.

Современный блок питания должен иметь вентилятор размером 120 или 140 мм.

10. Разъемы блока питания

ATX (24-pin) — разъем питания материнской платы. На всех блоках питания есть 1 такой разъем.
CPU (4-pin) — разъем питания процессора. На всех блоках питания есть 1 или 2 таких разъема. Некоторые материнские платы имеют 2 разъема питания процессора, но могут работать и от одного.
SATA (15-pin) — разъем питания жестких дисков и оптических приводов. Желательно, что бы в блоке питания было несколько отдельных шлейфов с такими разъемами, так как одним шлейфом подключить жесткий диск и оптический привод будет проблематично. Поскольку на одном шлейфе может быть 2-3 разъема, блок питания должен иметь 4-6 таких разъемов.
PCI-E (6+2-pin) — разъем питания видеокарты. Мощные видеокарты требуют 2 таких разъема. Для установки двух видеокарт необходимо 4 таких разъема.
Molex (4-pin) — разъем питания устаревших жестких дисков, оптических приводов и некоторых других устройств. В принципе не требуется если у вас нет таких устройств, но все равно присутствует во многих блоках питания. Иногда таким разъемом может подаваться напряжение на подсветку корпуса, вентиляторы, платы расширения.

Floppy (4-pin) — разъем питания дисковода. Сильно устарел, но его все еще можно встретить в блоках питания. Иногда им запитываются некоторые контроллеры (переходники).

Конфигурацию разъемов блоков питания уточняйте на сайте продавца или производителя.

11. Модульные блоки питания

В модульных блоках питания лишние кабели можно отстегнуть и они не будет мешаться в корпусе. Это удобно, но такие блоки питания стоят несколько дороже.

12. Настройка фильтров в интернет-магазине

  1. Зайдите в раздел «Блоки питания» на сайте продавца.
  2. Выберете рекомендуемых производителей.
  3. Выберете необходимую мощность.
  4. Задайте другие важные для вас параметры: стандарты, сертификаты, разъемы.
  5. Последовательно просматривайте позиции, начиная с более дешевых.
  6. При необходимости уточняйте конфигурацию разъемов и другие недостающие параметры на сайте производителя или другого интернет-магазина.
  7. Покупайте первую подходящую по всем параметрам модель.

Таким образом, вы получите оптимальный по соотношению цена/качество блок питания, удовлетворяющий вашим требованиям за минимально возможную стоимость.

13. Ссылки

Блок питания Corsair CX650M 650W
Блок питания Thermaltake Smart Pro RGB Bronze 650W
Блок питания Zalman ZM600-GVM 600W