Выпрямительные диоды предназначены для преобразования. Характеристики и параметры выпрямительных и универсальных диодов

Выпрямительный диод - это диод на основе полупроводникового материала, который предназначен для того, чтобы преобразовывать переменный ток в постоянный. Правда, этой функцией сфера применения этих радиодеталей не исчерпывается: они применяются для коммутации, в сильноточных схемах, где нет жесткой регламентации временных и частотных параметров электрического сигнала.

Классификация

В соответствии со значением прямого тока, который является максимально допустимым, выпрямительный диод может иметь малую, среднюю и большую мощности:

  • малой - выпрямляют прямой ток до 300 mA;
  • выпрямительные диоды средней мощности - от 300 mA до 10 А;
  • большой - более 10 А.

Германий или кремний

По применяемым материалам они бывают кремниевые и германиевые, однако более широкое применение нашли кремниевые выпрямительные диоды благодаря своим физическим свойствам.

У них обратные токи в несколько раз меньше, чем в германиевых, в то время как напряжение одинаково. Это дает возможность добиваться в полупроводниках очень высокой величины допустимых обратных напряжений, которые могут составлять до 1000-1500 В. В германиевых диодах этот параметр находится в диапазоне 100-400 В.

Кремниевые диоды способны сохранять работоспособность в диапазоне температур от -60 ºС до +150 ºС, а германиевые - только от -60 ºС до +85 ºС. Это происходит потому, что когда температура становится выше 85 ºС, количество образовавшихся электронно-дырочных пар достигает таких величин, что резко увеличивается обратный ток, и выпрямитель перестает работать эффективно.

Технология изготовления

Выпрямительный диод по конструкции представляет пластину полупроводникового кристалла, в теле которой имеются две области, имеющие разную проводимость. Это послужило причиной того, что их называют плоскостными.

Полупроводниковые выпрямительные диоды делаются так: на области кристалла полупроводника, имеющей проводимость n-типа, происходит расплавление алюминия, индия или бора, а на область кристалла с проводимостью p-типа расплавляется фосфор.

При воздействии высоких температур эти два вещества накрепко сплавляются с полупроводниковой основой. Кроме того, атомы этих материалов диффундируют внутрь кристалла с образованием в нем области с преимущественно электронной или дырочной проводимостью. В итоге образуется полупроводниковый прибор, имеющий две области с различного типа электропроводностью, а между ними образован p-n-переход. Таков принцип работы подавляющего большинства плоскостных диодов из кремния и германия.

Конструкция

Для того чтобы организовать защиту от воздействий извне, а также добиться надежного отвода тепла, кристалл, имеющий p-n-переход, монтируется в корпусе.
Диоды, имеющие малую мощность, производят в корпусе из пластмассы, снабдив гибкими внешними выводами. Выпрямительные диоды средней мощности имеют металлостеклянный корпус уже с жесткими внешними выводами. Детали большой мощности размещаются в корпусе из металлостекла или металлокерамики.

Кремниевые или германиевые кристаллы с p-n-переходом припаивают к кристаллодержателю, который одновременно служит основанием корпуса. К нему же приваривают корпус, имеющий стеклянный изолятор, сквозь который идет вывод одного из электродов.

Диоды малой мощности, которые имеют сравнительно малые габариты и вес, обладают гибкими выводами, при посредстве которых монтируются в схемах.

Поскольку токи, с которыми работают полупроводники средней мощности и мощные выпрямительные диоды, достигают значительных величин, их выводы намного мощнее. Нижняя их часть выполнена в виде массивного основания, отводящего тепло, оснащенного винтом и внешней поверхностью плоской формы, которая призвана обеспечивать надежный тепловой контакт с внешним радиатором.

Характеристики

Каждый тип полупроводников имеет свои рабочие и предельные параметры, которые подбирают для того, чтобы обеспечить работу в какой-либо схеме.

Параметры выпрямительных диодов:

  • I прям max - прямой ток, который максимально допустим, А.
  • U обрат max - обратное напряжение, которое максимально допустимо, В.
  • I обрат - обратный ток постоянный, мкА.
  • U прям - прямое напряжение постоянное, В.
  • Рабочая частота , кГц.
  • Температура работы , С.
  • Р max - рассеиваемая на диоде мощность, которая максимально допустима.

Характеристики выпрямительных диодов далеко не исчерпываются данным списком. Однако для выбора детали обычно их бывает достаточно.

Схема простейшего выпрямителя переменного тока

Рассмотрим, как работает схема (выпрямительный диод играет в ней главную роль) примитивного выпрямителя.

На его вход подается сетевое переменное напряжение с положительными и отрицательными полупериодами. К выходу выпрямителя подключается нагрузка (R нагр.), а функцию элемента, выпрямляющего ток, выполняет диод (VD).

Положительные полупериоды напряжения, поступающие на анод, вызывают открывание диода. В это время через него, а следовательно через нагрузку (R нагр.), которая питается от выпрямителя, протекает прямой ток (I прям.).

Отрицательные полупериоды напряжения, поступающие на анод диода, вызывают его закрывание. По цепи протекает небольшой обратный ток диода (I обр.). Здесь диод производит отсекание отрицательной полуволны переменного тока.

В результате выходит, что через подключенную к сети нагрузку (R нагр.), через диод (VD), теперь проходит пульсирующий, а не переменный ток одного направления. Ведь он может проходить исключительно в положительные полупериоды. В этом и заключается смысл выпрямления переменного тока.

Однако такое напряжение может запитать только нагрузку малой мощности, которая питается от сети переменного тока и не предъявляет серьезных требований к питанию, к примеру, лампы накаливания.

Лампа будет пропускать напряжение лишь при прохождении положительных импульсов, вследствие этого электроприбор подвергается слабому мерцанию, имеющему частоту 50 Гц. Правда, вследствие того, что нить подвержена тепловой инертности, она не сможет до конца остывать в перерывах между импульсами, а значит, мерцание будет почти не заметно.

В случае если такое напряжение подать на усилитель или приемник мощности, то в громкоговорителе будет слышен звук низкой частоты (частотой 50 Гц), который называется фоном переменного тока. Этот эффект происходит по причине того, что пульсирующий ток во время прохождения через нагрузку наводит в ней пульсирующее напряжение, порождающее фон.

Подобный недостаток в какой-то мере устраняется, если параллельно нагрузке включить фильтрующий конденсатор (C фильтр), емкость которого достаточно велика.

Конденсатор будет заряжаться импульсами тока при положительных полупериодах, и разряжаться через нагрузку (R нагр.) при отрицательных полупериодах. При достаточной емкости конденсатора за время, которое проходит между двумя импульсами тока, он не успеет полностью разрядиться, а следовательно, на нагрузке (R нагр.) будет постоянно находиться ток.

Но даже таким, относительно сглаженным, током также не следует питать нагрузку, ведь она будет продолжать фонить, потому что величина пульсаций (U пульс.) пока еще достаточно серьезна.

Недостатки

В выпрямителе, работу которого мы только что разобрали, с пользой применяется лишь половина волн переменного тока, вследствие этого на нем происходит потеря более чем половины входного напряжения. Такой вид выпрямления переменного тока получил название однополупериодного, а выпрямители, которые используют этот вид выпрямления, называются однополупериодными. Недостатки однополупериодных выпрямителей успешно устранены в выпрямителях, использующих диодный мост.

Диодный мост

Диодный мост - это компактная схема, которая составлена из четырех диодов, и служит цели преобразования переменного тока в постоянный. Мостовая схема дает возможность пропускать ток в каждом полупериоде, что выгодно отличает ее от однополупериодной. Диодные мосты производятся в форме сборок небольшого размера, которые заключены в корпус из пластмассы.

На выходе корпуса такой сборки имеются четыре вывода с обозначениями «+», «» или «~ », указывающими на назначение контактов. Однако диодные мосты встречаются и не в сборке, нередко они собираются прямо на печатной плате путем включения четырех диодов. Выпрямитель, который выполняется на диодном мосте, называется двухполупериодным.

коэффициент выпрямления

Вопрос 15

Стабилитрон – это прибор, предназначенный для стабилизации напряжения на присоединенной параллельно ему нагрузке в случае изменения ее сопротивления или величины напряжения питания

При работе стабилитрона используется участок пробоя на обратной ветви ВАХ, где значительному изменению тока соответствует очень малое изменение напряжения.

Напряжение стабилизации зависит от толщины p-nперехода, а толщина от величины удельного сопротивления материала

Рис 28 ВАХ стабилитрона

Рис 29 параметрический стабилизатор напряжения; 1 – нагрузка; 2 – для уменьшения пульсации вешается конденсатор.

При изменении температуры напряжение стабилизации изменяется неоднозначно. В слаболегированных полупроводниках (используются в высоковольтных стабилитронах) с ростом температуры длина свободного пробега носителей уменьшается. Для того, чтобы при меньшей длине свободного пробега носители могли приобрести энергию, достаточную для ионизации валентных связей, требуется большая величина напряженности электрического поля.

Напряжение пробоя с ростом температуры должно увеличиваться. В сильнолегированных полупроводниках при росте температуры ширина запрещенной зоны падает, вероятность тунеллирования носителей увеличивается, а напряжение пробоя уменьшается. Следовательно, высоковольтные и низковольтные стабилитроны должны иметь противоположные изменения величины стабилизации при изменении температуры

Основные параметры стабилитрона:


Стабисторы

Для стабилизации небольших напряжений (меньше 1В) используют прямую ветвь ВАХ. Предназначенные для этого полупроводниковые диоды называют стабисторами.

Кремниевые стабисторы имеют напряжение стабилизации около 0,7В. Для получения малого сопротивления базы диода и меньшего прямого дифф. сопротивления используют кремний с повышенной концентрацией примеси. Стабисторы могут выполняться на основе других полупроводниковых материалов.

1 .Проводники, изоляторы, полупроводники. Их зонные энергетические диаграммы.

2. Собственная электропроводность полупроводников.

3. Электронная электропроводность полупроводников.

4. Дырочная электропроводность полупроводников.

5. Электронно-дырочный переход. Виды пробоя электронно-дырочного перехода.

6. Механизм туннельного пробоя электронно-дырочного перехода.

7. Прямое и обратное включение р-п-перехо да.

8. Переход металл-полупроводник.

9. ВАХ р- n -перехода и перехода металл-полупроводник.

10. Ширина и емкость электронно-дырочного перехода.

11. Эквивалентная схема р-п-перехо да.

12. Переходные процессы в p - n -переходе.

13. Основные виды диодов и технологии их производства.

14. Выпрямительные диоды.

15. Стабилитроны и стабисторы.

16. Высокочастотные и импульсные диоды.

17. Диоды с накоплением заряда.

18. Туннельные и обращенные диоды.

19. Диоды сверхвысокочастотные.

20. Устройство, конструктивно-технологические особенности, схемы включения биполяр­ных транзисторов.

21. Режимы работы биполярных транзисторов, статические параметры, физические процессы.

22. Модель Эберса - Молла.

23. Статические характеристики в схеме с общим эмиттером.

24. Устройство и основные виды полевых транзисторов. Полевые транзисторы с управляющим переходом.

25. Устройство и основные виды полевых транзисторов. Полевые транзисторы с изолированным затвором.

ВОПРОС 16

высокочастотные диоды предназначены для детектирования колебаний высокой частоты и используются в радиоприемной, телевизионной и другой аппаратуре.

Они могут быть точечными, дифф-ными, сплавными или иметь мезаструктуру.

Рис 31 конструкция ВЧ диода. 1 – внешние выводы; 2 – кристалл; 3 – стеклянный корпус; 4 – вольфрамовый электрод

Рис 32 а) эквивалентная схема p - n перехода; б) ВАХ точечного германиевого диода

Эквивалентная схема кроме сопротивления перехода и емкости перехода содержит сопротивление растекания. Его величина определяется геометрическими размерами и конфигурацией точечного перехода. Если предположить, что контакт имеет полусферическую форму, то величина сопротивления растекания приближенно может быть определена:
, где- удельное объемное сопротивление полупроводника;- радиус закругления контакта
.

Барьерная емкость точечных диодов не превышает 1пФ, их рабочая частота достигает 150МГц.

Высокочастотные кремниевые диоды в конструктивном отношении не отличаются от германиевых. ВАХ кремниевых микросплавных диодов близки к теоретическим, если эксплуатация диодов соответствует паспортным режимам.

Импульсные диоды

Импульсные диоды предназначены для работы в устройствах импульсной техники. Особенностью их работы является значительное проявление эффектов накопления и рассеивания носителей при больших уровнях мощность переключающего сигнала.

Переходы импульсных диодов изготавливаются такими же методами, как и высокочастотные.

Рис 33 конструкция импульсных диодов. 1 – кристаллодержатель; 2 – стеклянный корпус; 3 – коваровая трубка; 4 – внешние выводы; 5 – контактная пружина; 6 – кристалл; 7 – припой.

Основные параметры высокочастотных и импульсных диодов

    постоянное прямое напряжение при заданном прямом токе

    максимальная величина обратного тока при максимальной величине обратного напряжения

    емкость диода при заданной величине обратного напряжения

    время восстановления обратного сопротивления

    постоянное и импульсное обратные напряжения

    средний выпрямленный ток

    импульсный прямой ток

    частота без снижения параметров, соответствующих паспортному режиму

    диапазоны рабочих температур.

Принцип работы, основные характеристики полупроводниковых выпрямительных диодов можно рассмотреть используя их вольтамперную характеристику (ВАХ), которая схематично представлена на рисунке 1.

Она имеет две ветви, соответствующие прямому и обратному включению диода.

При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр . Этот ток называется прямым Iпр . Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:

  • 0,7 Вольт для кремниевых диодов,
  • 0,3 Вольт - для германиевых.

Естественно, прямой ток диода до бесконечности увеличивать нельзя, при его определенном значении Iпр.макс этот полупроводниковый прибор выйдет из строя. Кстати, существуют две основные неисправности полупроводниковых диодов:

  • пробой - диод начинает проводить ток в любом направлении, то есть станет обычным проводником. Причем, сначала наступает тепловой пробой (это состояние обратимо), затем электрический (после этого диод можно смело выбрасывать),
  • обрыв - здесь, думаю, пояснения излишни.

Если диод подключить в обратном направлении, через него будет протекать незначительный обратный ток Iобр , которым, как правило, можно пренебречь. При достижении определенного значения обратного напряжения Uобр обратный ток резко увеличивается, прибор, опять же, выходит из строя.

Числовые значения рассмотренных параметров для каждого типа диода индивидуальны и являются его основными электрическими характеристиками. Должен заметить, что существует ряд других параметров (собственная емкость, различные температурные коэффициенты и пр.), но для начала хватит перечисленных.

Здесь предлагаю закончить с чистой теорией и рассмотреть некоторые практические схемы.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ

Для начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов.

При подаче на диод прямого постоянного напряжения через него начинает протекать ток, определяемый сопротивлением нагрузки Rн . Поскольку он не должен превышать предельно допустимого значения следует определить его величину, после чего выбрать тип диода:

Iпр=Uн/Rн - все просто - это закон Ома .

Uн=U-Uоткр - см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода .

Это самое основное, про что надо помнить.

Теперь - несколько схем подключения диодов, часто встречающихся на практике.

Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант - условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем.

  1. Диоды могут выступать как "развязывающие" элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А , причем взаимное влияние их источников друг на друга отсутствует. Кстати, это простейший вариант реализации логической схемы "или".
  2. Защита от переполюсовки (жаргонное - "защита от дураков"). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
  3. Автоматический переход на питание от внешнего источника. Поскольку диод "открывается", когда напряжение на нем достигнет Uоткр , то при Uвнеш питание осуществляется от внутреннего источника, иначе - подключается внешний.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Выпрямительные диоды

В выпрямителях переменного напряжения наибольшее примене­ние находят германиевые и кремниевые полупроводниковые диоды. Основными методами получения р- n переходов для выпрямитель­ных диодов являются сплавление и диффузия.

Конструкция маломощного сплавного кремниевого диода пока­зана на рис. 6,1, а. Электронно-дырочный переход образуется вплавлением алюминия в кремний. Пластинка кремния с р- n пере­ходом припаивается к кристаллодержателю, являющемуся одно­временно основанием корпуса диода. К кристаллодержателю приваривается корпус со стеклянным изолятором, через который проходит вывод алюминиевого электрода.

Риc. 6.1. Конструкция выпрямительных диодов:

а - сплавной маломощный кремниевый диод (1 - внешние выводы; 2 - кристаллодержатель;

3 - корпус; 4 - стеклянный изолятор; 5 - алюминиевая проволока; 6 - кристалл; 7- припой);

б - мощный выпрямительный диод (1 - внешние выводы; 2 - стеклянный изолятор; 3 - корпус;

4 - кристалл; 5 - припой; 6 - кристаллодержатель);

в - выпрями­тельный столб

В диффузионных диодах р- n переход создается при высокой температуре диффузией примеси в кремний или германий из среды, содержащей пары примесного материала. Конструкции диффузион­ных и сплавных выпрямительных диодов аналогичны. Маломощные выпрямительные диоды имеют относительно небольшие габариты и массу и с помощью гибких выводов монтируются в схему. У мощ­ных диодов кристаллодержатель представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверх­ностью для обеспечения надежного теплового контакта с внешним теплоотводом (рис. 6.1, б). Между кристаллом и основанием обыч­но помещают пластинку из вольфрама или ковара, имеющую при­мерно такой же коэффициент линейного расширения, как и материал кристалла. Это способствует уменьшению механических напряже­ний в кристалле при изменении температуры.

Выпрямительные столбы представляют собой несколько специ­ально подобранных диодов, соединенных последовательно и зали­тых эпоксидной смолой. Внешний вид и схематическое устройство типичного выпрямительного столба показаны на рис. 6.1, в.

Работа полупроводникового выпрямительного диода основана на свойстве р- n перехода пропускать ток только в одном направ­лении.

Основной характеристикой полупроводниковых диодов являет­ся вольтамперная характеристика. Для сравнения на рисунке при­ведены типовые вольтамперные характеристики германиевого и кремниевого диодов. Кремние­вые диоды имеют во много раз меньшие обратные токи при одинаковом напряжении, чем германиевые. Допустимое об­ратное напряжение кремние­вых диодов может достигать 1500 В,

в то время как у германиевых оно лежит в пре­делах 100...400 В. Кремниевые диоды могут работать при тем­пературах -60...+150°С, а германиевые - 60...-85 °С. Это обусловлено тем, что при температурах выше 85 °С резко увели­чивается собственная проводимость германия, приводящая к недо­пустимому возрастанию обратного тока. Вместе с тем прямое падение напряжения у кремниевых диодов больше, чем у германие­вых. Это объясняется тем, что у германиевых диодов можно полу­чить величину сопротивления в прямом направлении в 1,5-2 раза меньшую, чем у кремниевых, при одинаковом токе нагрузки. По­этому мощность, рассеиваемая внутри германиевого диода, во столько же раз меньше. В связи с этим в выпрямительных уст­ройствах низких напряжений выгоднее применять германиевые диоды.

К основным стандартизированным параметрам выпрямительных диодов относятся:

Средний прямой ток / ПР.СР - среднее за период значение пря­мого тока.

Максимально допустимый средний прямой ток / ПР.СР. max .

Средний выпрямленный ток / ВП.СР - среднее за период значение выпрямленного тока, протекающего через диод (с учетом обратного тока).

Максимально допустимый средний выпрямленный ток I ВП.СР. max .

Постоянное прямое напряжение U ПР. - значение постоянного напряжения на диоде при заданном постоянном прямом токе.

Среднее прямое напряжение U ПР.СР - среднее за период зна­чение прямого напряжения при заданном среднем значении пря­мого тока.

Постоянное обратное напряжение U ОБР - значение постоян­ного напряжения, приложенного к диоду в обратном направлении.

Максимально допустимое постоянное обратное напряжение - U ОБР. max

Максимально допустимое импульсное обратное напряжение - U ОБР . И. max

Постоянный обратный ток / ОБР - значение постоянного тока, протекающего через диод в обратном направлении при заданном, обратном напряжении.

Средний обратный ток / ОБР,СР - среднее за период значение обрат­ного тока.

При разработке выпрямительных схем может возникнуть не­обходимость получить выпрямленный ток, превышающий предель­но допустимое значение для одного диода. В этом случае применяют параллельное включение однотипных диодов (рис. 6.3, а).

Для выравнивания токов, протекающих через диоды, последо­вательно с диодами включаются омические добавочные резисторы R ДОБ порядка нескольких Ом. Это позволяет искусственно уравнять прямые сопротивления диодов, которые для разных образцов при­боров могут быть существенно различными.

В высоковольтных цепях часто используют последовательное соединение диодов (рис. 6.3, б ). При таком соединении напряже­ние распределяется между всеми диодами.

Для обеспечения надеж­ной работы диодов параллельно каждому из них следует включить резистор (порядка 100 кОм) для выравнивания обратных сопротивлений. В этом случае напряжения на всех диодах будут рав­ными.

Выпрямительный диод — это прибор проводящий ток только в одну сторону. В основе его конструкции один p-n переход и два вывода. Такой диод изменяет ток переменный на постоянный. Помимо этого, их повсеместно практикуют в электросхемах умножения напряжения, цепях, где отсутствуют жесткие требования к параметрам сигнала по времени и частоте.

  • Принцип работы
  • Основные параметры устройств
  • Выпрямительные схемы
  • Импульсные приборы
  • Импортные приборы

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение - Si) и германиевые (обозначение - Ge). У первых рабочая температура выше. Преимущество вторых - малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

  • Первый элемент – обозначение материала из которого он выполнен;
  • Второй определяет подкласс;
  • Третий обозначает рабочие возможности;
  • Четвертый является порядковым номером разработки;
  • Пятый – обозначение разбраковки по параметрам.

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.

ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Он отражает качество выпрямителя.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

  • Наибольшее значение среднего прямого тока;
  • Наибольшее допустимое значение обратного напряжения;
  • Максимально допустимая частота разности потенциалов при заданном прямом токе.

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

  • Приборы малой мощности. У них значение прямого тока до 300 мА;
  • Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А;
  • Силовые (большой мощности). Значение более 10 А.

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

  • Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт;
  • Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.

Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.

Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

  • Максимальные импульсные прямые (обратные) напряжения, токи;
  • Период установки прямого напряжения;
  • Период восстановления обратного сопротивления прибора.

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.