Операционные системы реального времени для микроконтроллеров. Встраиваемые системы и ос для них

Привет, Хабр!
Сегодня я расскажу о такой интересной штуке как операционная система реального времени(ОСРВ). Не уверен, что это будет интересно для бывалых программистов, но, думаю, новичкам понравится.

Что такое ОСРВ?

Если мы посмотрим в Википедию, то увидим аж 4 определения.
Если же говорить вкратце - то ОСРВ - это операционная система, реагирующая на внешние события в определенный промежуток времени. Отсюда мы и можем понять основное предназначение ОСРВ - приборы, в которых необходима быстрая реакция на события (однако ни в коем случае не путайте работу ОСРВ с прерываниями).

Зачем она нам нужна?

На то есть довольно много причин.
Во-первых ОСРВ поддерживает многозадачность, приоритеты процессов семафоры и многое другое.
Во-вторых она очень легкая и почти не требует ресурсов.
В-третьих все вышесказанное мы можем получить практически на любом железе (например, FreeRTOS запускается даже на 8-битных AtMega).
Ну и в-четвертых: просто поиграться и получить удовольствие.

Обзор 3 известных ОСРВ.

Внимание: дальше идет мое личное мнение.
FreeRTOS
Одна из самых популярных ОСРВ на сегодняшний день. Портирована на огромное количество железа. Оффициальный сайт .
Плюсы
1) Бесплатная
2) Портирована на большое количество железа
3) Мощный функционал
4) Есть различные библиотеки: графика, интернет и другое.
5) Хорошая документация.
Минусы
1)Довольно-таки сложный процесс портирования на новое железо.

Вывод: Это действительно профессиональная ОСРВ с хорошей документацией. Будет хороша для новичка, если на его железо уже есть порт.

KeilRTX
До последнего времени эта ОСРВ была коммерческой, но недавно стала открытой. Работает только на архитектуре arm. Оффициальный сайт .
Плюсы
1)Бесплатная
2)Легко портируется на новое железо(в пределах архитектуры arm).
3) Есть различные библиотеки: графика, интернет и другое.
Минусы
1)Работать на в Keil с ней практически нереально
2) Немного урезанный функционал
3) Поддерживается только arm.
4)(на личном опыте) Проигрывает многим ОСРВ по скорости.
Вывод: идеально подойдет для новичка и мелких проектов.
uc/os
Мощная коммерческая ОСРВ. Сайт .
Плюсы
1) Огромное количество функций и библиотек.
2) Поддерживает много железа
Минусы
1)Коммерческая.
2) Сложна в использовании.

Вывод: назвать ее ОСРВ для новичка можно с большой натяжкой.

Другие интересные ОСРВ

RTLinux ОСРВ на основе обычного Линукса.
QNX ОСРВ на основе Unix.

Особенности разработки с использованием ОСРВ

Ну во-первых надо понять следующее: ОСРВ- это не Windows. Его нельзя установить. Эта система просто компилируется с Вашей программой.
При написании программ с ОСРВ не используются функции в обычном их понимании. Вместо функций используются процессы(или таски).Отличие в том что процессы, в отличии от функций, являются бесконечными циклами и никогда не заканчиваются(если только кто-то или он сам его не убъет - то есть выгрузит из памяти).
Если включено несколько процессов, то ОСРВ переключает их, выдавая машинное время и ресурсы по очереди. Вот тут то и возникает понятия приоритета процесса- если двум процессам единовременно нужно машинное время, то ОСРВ даст его тому, у кого приоритет больше.
В ОСРВ есть специальные функции задержки- чтобы время зря не пропадало на время задержки одного процесса выполняется второй.
Теперь поговорим о такой вещи как семафор- эта такая штука, которая управляет доступом процесса к ресурсам приложения. Для каждого ресурса есть маркер - когда процессу нужен ресурс - он его забирает и пользуется данным ресурсом. Если маркера нет, то процессу придется ждать, пока его вернут. Приведу пример: разные процессы отправляют информацию по одному UART. Если бы не было семафора, то они бы отправляли байты по очереди и получилась бы неразбериха. А так первый процесс взял маркер на UART отправил сообщение и отдал второму(и так - до бесконечности).

Дополнительные библиотеки ОСРВ.

Часто ОСРВ предлагают различные библиотеки для работы, например, с графикой, интернетом и т.д. Они действительно удобны и не стоит брезгать их использовать. Однако, помните, что без ОСРВ, для которой они написаны, они работать не будут.
Вот примеры:
Для RTX

Что приходит на ум когда слышишь операционная система? Наверняка форточки, линукс, макось.. или что нибудь подобное. Верно, и на вопрос зачем она нужна, все уверенно ответят: послушать музыку, поиграть в игру (по интернету!), разговаривая при этом с другом по скайпу. Заодно созерцая, как мигает светодиодик, получив байт с юарта =).

А если копнуть глубже, то прослушивание музыки, пересылка данных по Интернету — это все одиночные процессы, а так как процессор у нас один, то одновременно он может выполнять только одну задачу. Поэтому задачи выполняются поочередно небольшими «порциями», суть ОС делать это незаметно для пользователя: чтобы звук не хрипел и байтики слались и все работало одновременно. При этом, если одна из задач «повиснет», то все остальное продолжало работать.

Если отбросить все лишние плюшки и оставить голую суть, то в первую очередь ОС это просто таймер, который отсчитывает равные промежутки времени, а также сам без участия пользователя переключается между задачами, выполняет какую то часть и снова переключается. Также нужно учесть, что большинство задач могут не успевать выполниться за один квант времени, поэтому нужно сохранять состояние задачи в момент переключения на другую, а в следующий раз восстанавливать состояние переменных. Управлением всего этого занимается планировщик заданий.

Есть два основных вида ОС: вытесняющая и кооперативная. В первом случае, переключение между задачами будет «жестким», т.е. если квант времени 1мс, то сначала первая задача будет выполняться ровно 1мс, затем вторая ровно 1мс и т.д. Такие оси называются реального времени (ОСРВ). У кооперативных немного попроще, процесс сам должен сказать что «я выполнился», поэтому к ОСРВ их отнести нельзя.

Впердолить вытесняющую на мелкие AVR не получится по причине небольшого количества ОЗУ. Из имеющихся вариантов кооперативок, мне приглянулась mRTOS, почитать подробности сей системы можно на сайте автора (легко гуглится). Главная причина ее использования — простота, наличие готовой версии под CAVR, для понимания общих принципов самое то.

Итак, остались главные вопросы, зачем и когда применять ось. Теоретически, все тоже самое, что вы сделаете с осью, вы можете сговнякать без нее, ибо ресурсы одни и те же. От того, что вы приладите ее к проекту, мегагерцы в космос не взлетят, железо останется тем же, следовательно ресурсы те же.

Поэтому стоит задать себе несколько вопросов:
1.Сможете ли вы распорядиться грамотно ресурсами?
2. Не предполагается ли в процессе написания прошивки изобретать такой же велосипед, подобный планировщику?
3. Насколько читаем Ваш код? Способны ли Вы через полгода-год открыть его и сходу разобраться?
4. Один ли Вы пишите или группой?

На первый вопрос дать ответ сложно, ибо все зависит от криворукости разработчика. Со вторым все более понятно, если есть много независимых задач и планируется выполнять их через определенные промежутки времени, то лучше посмотреть в сторону ОС. С третьим тоже понятно, гораздо проще разбираться в отдельной задаче, чем ковырять зависимости в основном цикле. Если Вы пишите не один, то тут тоже есть плюсы, ибо каждый может писать свою задачу отдельно, не мешая остальным.

Объединяя выше сказанное, сфера применения довольно специфична, под определенный круг задач. Не стоит пихать ее в каждый проект. Для большинства радиолюбительских поделок ось излишня, но имея представление о ней раньше, наверняка бы засунул ее пару проектов.

Теперь заглянем под капот. Для запуска mRTOS к проекту нужно подключить mrtos.c и заинклюдить mrtos.h. Структура кода немного отличается от привычного

#include #include "mrtos.h" //тут тело функции где мы пишем свой супер код void task1() { while (1 ) //задачи в любой ОС построены на базе бесконечного цикла { //тут код Вашей задачи DISPATCH; //функция передачи управления планировщику } ; } //обработчик прерывания таймера 0 interrupt [ TIM0_OVF] void timer0_ovf_isr(void ) { char ii; #asm("cli") TCNT0= 0x9C ; inc_systime() ; for (ii = 0 ; ii< init_tasks; ii++ ) if (tasks[ ii] .delay ) -- tasks[ ii] .delay ; #asm("sei") } void main(void ) { //инициализация периферии Init_mRTOS() ; //инициализация ос //тут создаем таски(задачи) здесь создано 3 задачи create_task(task1, 1 , Active) ; //создать задачу (имя задачи, приоритет, статус) create_task(task2, 1 , Active) ; create_task(task3, 1 , Active) ; Sheduler() ; //запуск планировщика while (1 ) ; }

#include #include "mrtos.h" //тут тело функции где мы пишем свой супер код void task1() { while(1)//задачи в любой ОС построены на базе бесконечного цикла { //тут код Вашей задачи DISPATCH; //функция передачи управления планировщику }; } //обработчик прерывания таймера 0 interrupt void timer0_ovf_isr(void) { char ii; #asm("cli") TCNT0=0x9C; inc_systime(); for(ii = 0; ii

Теперь подробнее. количество задач указывается в mrtos.h дефайном APPTASKS N. Задача объявляется внутри task1(){}, task2(){} и тому подобное, внутри while(1) не нужно ничего писать, вызывать функции тоже никак не нужно, все это сделает за вас планировщик. Как видно задача состоит из бесконечного цикла, это нормально так и должно быть, но внутри задачи нужно обязательно отдавать управление планировщику. Либо функцией WAIT, либо DISPATCH. Если этого не сделать, то задача будет выполняться бесконечно.

Как это работает? Создадим таск мигания светодиодом.

void task1() { while (1 ) { PORTB.0 = ! PORTB.0; WAIT(100 ) ; } ; }

void task1() { while(1) { PORTB.0 = !PORTB.0; WAIT(100); }; }

WAIT это некий аналог delay() только, во время делея микроконтроллер ничего не выполняет и гоняет пустые циклы. Во время же WAIT управление передается другим задачам. Т.е. можно создать кучу тасков миганиями разных светодиодов, с разным WAIT и все они будут мигать с разной частотой. Если задержки не нужны то в конце используетм DISPATCH.

При использовании WAIT важно понимать, что вся система имеет минимальный тик (квант времени), поэтому мы ждем не WAIT(50) 50 милисекунд, а 50 тиков системы. Настройка тика зависит от того, как часто вызывается прерывания таймера0, т.е. если мы настроили прерывание на 1мс, то мы можем предполагать, что наше действие выполнится в течение 1мс. Опыты показали что уменьшить системный тик можно до ~20 мкс при тактовой 16МГц.

Настройка таймера ничем не отличается изученного ранее, так как таймер0 имеет только прерывание по переполнению, то все настройки завязаны на это. В последних версиях CAVR очень удобно сделано можно писать time requiments, настройки автоматически сгенерятся.

create_task(task1, 1 , Active) ;

create_task(task1,1,Active);

С приоритетами все довольно таки не просто. Если имеются две задачи с разными приоритетом и задача с большим приоритетом постоянно выполняется, то в задачу с низким приоритетом мы никогда не зайдем. Поэтому нужно организовывать работу так, чтобы все задачи получали доступ. Заострять внимание на этом не будем, припасем на следующий раз. Состояние задачи, Active — запущена, остановлена StopTask.

Итак, для желающих просто мигнуть светодиодом:

#include #include "mRTOS.h" void task1() { while (1 ) { WAIT(1000 ) ; PORTB.0=! PORTB.0; } } // Timer 0 overflow interrupt service routine interrupt [ TIM0_OVF] void timer0_ovf_isr(void ) { char ii; #asm("cli") TCNT0= 0xb2 ; inc_systime() ; for (ii = 0 ; ii< init_tasks; ii++ ) if (tasks[ ii] .delay ) -- tasks[ ii] .delay ; #asm("sei") } void main(void ) { DDRB= (1 << DDB7) | (1 << DDB6) | (1 << DDB5) | (1 << DDB4) | (1 << DDB3) | (1 << DDB2) | (1 << DDB1) | (1 << DDB0) ; PORTB= (0 << PORTB7) | (0 << PORTB6) | (0 << PORTB5) | (0 << PORTB4) | (0 << PORTB3) | (0 << PORTB2) | (0 << PORTB1) | (0 << PORTB0) ; // Timer/Counter 0 initialization // Clock source: System Clock // Clock value: 7,813 kHz TCCR0= (0 << CS02) | (1 << CS01) | (1 << CS00) ; TCNT0= 0x83 ; // Timer(s)/Counter(s) Interrupt(s) initialization TIMSK= (0 << OCIE2) | (0 << TOIE2) | (0 << TICIE1) | (0 << OCIE1A) | (0 << OCIE1B) | (0 << TOIE1) | (1 << TOIE0) ; Init_mRTOS() ; create_task(task1, 1 , Active) ; Sheduler() ; while (1 ) ; }

#include #include "mRTOS.h" void task1() { while(1) { WAIT(1000); PORTB.0=!PORTB.0; } } // Timer 0 overflow interrupt service routine interrupt void timer0_ovf_isr(void) { char ii; #asm("cli") TCNT0=0xb2; inc_systime(); for(ii = 0;ii

В качестве бонуса я попробовал сделать полифоническую (двухголосую) мелодию «Dr.Mario chill». Идея в том, что каждая ножка контроллера постоянно инвертируется в отдельном таске, тем самым генерируя частоту. Меняя задежку можно менять высоту ноты.

void task2(void ) { while (1 ) { if (mute == 0 ) //если разрешено играть { if (note_ch2[ n_n] == 0 ) //если пауза то ждем, ничего не играем { PORTB.4 = 0 ; WAIT(5 ) ; } else { PORTB.4 = ! PORTB.4; //если не пауза то дрыгаем ногой с нужной частотой WAIT(note_ch2[ n_n] ) ; } } } }

void task2(void) { while(1) { if(mute == 0) //если разрешено играть { if(note_ch2 == 0) //если пауза то ждем, ничего не играем { PORTB.4 = 0; WAIT(5); } else { PORTB.4 = !PORTB.4; //если не пауза то дрыгаем ногой с нужной частотой WAIT(note_ch2); } } } }

Я не заморачивался с идеей, в 1 таске генерится меандр с частотой ноты для соло партии, во втором для баса. Высота каждой ноты берется из массивов. Длительность, переключение и обрывание в таске3.

void task3(void ) { while (1 ) { WAIT(1500 ) ; //играем минимальную длительность ноты for (mute = 0 ; mute < 500 ; mute++ ) //обрываем ноту, чтобы не сливались { PORTB.3 = 0 ; PORTB.4 = 0 ; } ; mute = 0 ; //выставляем флаг, что можно воспроизводить звук n_n++; //переходим на следующую ноту if (n_n == n_max) //если сыграли все то идем по кругу { n_n = 0 ; } } }

void task3(void) { while(1) { WAIT(1500); //играем минимальную длительность ноты for(mute = 0; mute < 500; mute++) //обрываем ноту, чтобы не сливались { PORTB.3 = 0; PORTB.4 = 0; }; mute = 0; //выставляем флаг, что можно воспроизводить звук n_n++; //переходим на следующую ноту if(n_n == n_max) //если сыграли все то идем по кругу { n_n = 0; } } }

Чтобы смешать два канала использовал простенькую схемку.

Итого небольшой кусочек

Для желающих прошивка

Я разработал немногим более 10 электронных устройств и вполне обходился в их низкоруровневой работе без операционной системы. Ситуация поменялась, когда функционал следующего девайса резко расширился. Кроме того, появилась необходимость в задаче, которая вызывается через заданные интервалы времени, причем точность вызова влияет на результат. Также стало понятно, что написать все ПО за выделенное время не получится, и оно будет создано позже. После недолгих размышлений я понял, что в проект необходимо включить операционную систему реального времени (ОСРВ или RTOS).

В отличие от ПК, где ОС – это больше слой для работы с системными ресурсами, для микроконтроллера ОСРВ – это в первую очередь планировщик задач, собственно он и играет главную роль в «реальном времени». На данный момент для меня важно обеспечить так называемое «псевдопараллельное» выполнение задач. То есть существует несколько задач с одинаковым приоритетом и важно вызывать их в заданном порядке через заданные интервалы времени.

Нагляден следующий пример: в проекте Евробот 2011 в системе присутствовало 18 периферийных устройств. 2 электронных платы можно было по функционалу объединить в одно. Снизилась бы их стоимость, повысилась надежность (уменьшили число компонентов в системе), увеличилось количество свободного места в корпусе. Обстоятельство осложняет то, что число задач растет пропорционально и тут уже не обойтись без ОС. Также ОСРВ помогает избежать возможных простоев работы процессора, например, во время преобразования АЦП вы можете заблокировать эту задачу и выполнять другие, тем самым правильно распределяя работу устройства. Важно и то, что теперь устройство не упадет из-за сбоя в задаче, вместо этого возможно сохранение частичной работоспособности (хотя это и может привести к непредсказуемым результатам). За счет чего мы обеспечиваем рост этих показателей? По сути, мы выжимаем из МК все возможное, эффективно используя его вычислительные возможности.

После недолгих поисков выбор пал на freeRTOS. Эта ОСРВ распространяется в исходниках на С и портирована на 27 архитектур. Последнее обстоятельство для меня – решающее. Оно снизит трудозатраты при работе с МК других производителей. Сейчас же меня больше интересует порт для AVR.

Наличие ОСРВ freeRTOS в проекте съедает у вас около 9.8 Кб памяти программ и 1.8 Кб ОЗУ. К примеру для ATmega32 и компиляторе WinAVR это 60% и 85% соответственно. Уже для этой модели создать девайс с большим функционалом сложно – не хватит памяти. Но эта проблема отпадает при использовании новых моделей AVR. Это совершенно нипочем для Mega2560 с ее 256Кб памяти программ и 8 Кб ОЗУ. Тенденция будущих МК только сопутствует успеху ОСРВ.

Бегло пробежавшись по рунету, я с удивлением обнаружил, что нет документации на ОС на русском языке. Да какое тут! Оригинальная документация распространяется за дополнительную стоимость. Ситуацию упростила статья Андрея Курница ([email protected]) из журнала «Компоненты и технологи». По согласию с автором я буду использовать материалы статьи в переработанном варианте. Его статья вполне может послужить документацией на русском языке. Но оригинал недоступен в печатном виде, сайт журнала лежит, поэтому материал придется немного переработать. В целом, автор сделал отличную статью и нет смысла еще раз пройтись по теории, она будет полностью опубликована здесь. Оригинал статьи будет приложен в конце публикации. Также я заметил, что у пользователей возникли трудности при компиляции ОСРВ. Это связано с тем, что используется внешний makefile, в котором прописаны пути к папкам. Поэтому я приложу готовый проект в виде шаблона для AVR Studio и AVR Eclipse. К сожалению, родной makefile не выводит отладочную информацию, такую, как степень занятости ОЗУ и памяти программ, это пришлось пофиксить, добавив соответствующий стандартный вызов.

Итак, кратко про необходимость, в вашем проекте желательно использовать ОСРВ, если необходимо:

Организовать мультизадачность и поочередное выполнение задач

Обеспечить запуск задачи через строго определенные интервалы времени

Передать информацию от одной задачи к другой

Добавлять по мере необходимости новые задачи

Преимущества ОСРВ перед М К:

  1. Многозадачность. ОСРВ предоставляет программисту готовый, отлаженный механизм многозадачности. Каждую задачу в простом случае можно программировать отдельно, всю работу разбить между несколькими членами команды. Не нужно заботиться о переключении между задачами, это сделает планировщик.
  2. Временная база. Необходимо отмерять интервалы времени. ОСРВ должна иметь этот инструмент. Он позволит выполнять действия через строго выделенные интервалы времени.
  3. Обмен данными между задачами. Для этого в ОСРВ используется очередь.
  4. Синхронизация. Если разные задачи используют один и тот же ресурс, например последовательный порт, то можно использовать мьютексы и критические секции. Если необходимо выполнять задачи в строгой последовательности или при наступлении определенного события, то можно использовать семафоры или сигналы для синхронизации задач.

Недостатки ОСРВ :

1. Резкое увеличение потребной памяти программ для реализации ядра

2. Увеличение потребной ОЗУ для хранения стека каждой задачи, семафоров, очередей, мьютексов и других объектов ядра системы.

3. Задержки при переключении между задачами на сохранение контекста.

Описание freeRTOS :

FreeRTOS – это бесплатная ОС жесткого реального времени с открытым исходным кодом. Преимущественно написана на С, но присутствуют ассемблерные вставки. Она была разработана компанией Real Time Engineers ltd специально для встраиваемых систем. Недавно начал развиваться проект «SafeRTOS»- доработанный, документированный, протестированный и прошедший сертификацию на соответствие стандарту безопасности IEC 61508 вариант FreeRTOS. Этим проектом занималась немецкая компания и теперь safeRTOS используется в аэрокосмической промышленности и медицинской технике. Также существует проект openRTOS - коммерческая версия с гарантией производителя.

Основные характеристики freeRTOS :

1. Планировщик поддерживает 3 типа многозадачности:

Вытесняющую

Кооперативную

Гибридную

2. Размер ядра составляет 9.8 Кб в скомпилированном виде для AVR. (WINAVR)

3. Основа ядра – 4 файла на С.

4. Поддерживает задачи и сопрограммы. Сопрограммы специально созданы для МК с малым объемом ОЗУ.

5. Богатые возможности трассировки.

6. Есть возможность отслеживать переполнение стека.

7. Нет программных ограничений на количество одновременно выполняемых задач.

8. Нет ограничения на количество приоритетов задач.

9. Нескольким задачам может быть назначен одинаковый приоритет

10. Развитые средства синхронизации «задача-задача» и «задача-прерывание»:

Очереди

Двоичные семафоры

Счетные семафоры

Рекурсивные семафоры

Мьютексы

11. Мьютексы с наследованием приоритета.

12. Поддержка модуля защиты памяти для Cortex-M3

13. Поставляется в отлаженном виде с демо-проектами для различных платформ и компиляторов.

14. Бесплатна. Можно использовать в проектах без раскрытия исходного кода в соответствии с расширенной лицензией GPL.

15. Документация платная, но доступна в онлайн здесь.

16. Время переключения контекста для AVR с кварцем на 16Мгц составит всего 20.8 мкс. Именно столько нужно для сохранения данных в стек задачи и вызов следующей. (Интересное замечание, если сравнить это с PIC18xxx, то контроллер от AVR делает это быстрее в 4 раза!!!, скорее всего это связано с качеством компилятора)

Вытесняющая многозадачность означает, что выполняющаяся задача с низким приоритетом перекрывается готовой задачей с более высоким приоритетом. Переключение между задачами происходит через равные кванты времени. Поэтому прежде, чем выскопоприоритетная задача начнет выполнение, должен закончиться текущий квант времени, когда выполняется низкоприоритетная.

Таким образом, время реакции FreeRTOS на внешние события в режиме вытесняющей многозадачности-не больше одного кванта времени планировщика, который можно за­давать в настройках. По умолчанию он равен 1 мс.

Если готовы к выполнению несколько за­дач с одинаковым приоритетом, то в таком случае планировщик выделяет каждой из них по одному кванту времени, по истечении которого управление получает следующая задача с таким же приоритетом, и так далее по кругу.

Кооперативная многозадачность отличается от вытесняющей тем, что планировщик самостоятельно не может прервать выполнение текущей задачи, даже готовая к выполнению задача с большим приоритетом. Каждая задача должна самостоятельно передать управление планиров­щику. Таким образом, высокоприоритетная задача будет ожидать, пока низкоприоритет­ная завершит свою работу и отдаст управле­ние планировщику. Время реакции системы на внешнее событие становится неопреде­ленным и зависит от того, как долго текущая задача будет выполняться до передачи управ­ления. Кооперативная многозадачность при­менялась в семействе ОС Windows 3.x.

Вытесняющая и кооперативная концеп­ции многозадачности объединяются вместе в гибридной многозадачности, когда вызов планировщика происходит каждый квант времени, но, в отличие от вытесняющей многозадачности, программист имеет воз­можность сделать это принудительно в теле задачи. Особенно полезен этот режим, ког­да необходимо сократить время реакции си­стемы на прерывание. Допустим, в текущий момент выполняется низкоприоритетная за­дача, а высокоприоритетная ожидает насту­пления некоторого прерывания. Далее про­исходит прерывание, но по окончании ра­боты обработчика прерываний выполнение возвращается к текущей низкоприоритетной задаче, а высокоприоритетная ожидает, пока закончится текущий квант времени. Однако если после выполнения обработчика преры­вания передать управление планировщику, то он передаст управление высокоприори­тетной задаче, что позволяет сократить время реакции системы, связанное с внешним событием.

С чего на чат ь?

Начать разработку микроконтроллерного устройства, работающего под управлением FreeRTOS, можно с загрузки ее последней версии .

Дистрибутив FreeRTOS доступен в виде обычного или самораспа­ковывающегося ZIP-архива. Дистрибутив Содержит непосредственно код ядра (в виде нескольких заголовочных файлов и файлов с исходным кодом) и демонстраци­онные проекты (по одному проекту на каж­дую среду разработки для каждого порта). Далее следует распаковать архив в любое подходящее место на станции разработки.

Несмотря на достаточно большое количе­ство файлов в архиве, структура директорий на самом деле проста. Если планируется проектировать устройства на 2-3 архитектурах в 1-2 средах разработки, то большая часть файлов, относя­щихся к демонстрационным проектам и раз­личным средам разработки, не понадобится.

Подробная структура директорий приве­дена на рисупке.

Весь исходный код ядра находится в ди­ректории /Source.

Содержимое:

1.tasks.c - реализация механизма задач, планировщик

2. queue.c - реализация очередей

3. list.c - внутренние нужды планировщика, однако функции могут использоваться и в прикладных программах.

4. croutine.c - реализация сопрограмм (мо­жет отсутствовать в случае, если сопро­граммы не используются).

Заголовочные файлы, которые находятся в директории source/include

1. tasks.h, queue.h, tist.h, croutine.h - заголо­вочные файлы соответственно для одно­именных файлов с кодом.

2. FreeRTOS.h -содержит препроцессорные директивы для настройки компиляции.

3. mpu_wrappers.h - содержит переопреде­ления функций программного интерфейса (API-функций) FreeRTOS для поддержки модуля защиты памяти (MPU).

4. portable.h -платформозависимые на­стройки.

5. projdefs.h -некоторые системные определения

6. semphr.h - определяет API-функции для работы с семафорами, которые реализо­ваны на основе очередей.

7. StackMacros.h - содержит макросы для контроля переполнения стека. Каждая аппаратная платформа требу­ет небольшой части кода ядра, которая реа­лизует взаимодействие FreeRTOS с этой платформой. Весь платформенно-зависимый код находится в поддиректории /Source/Portable , где он систематизирован но средам разработ­ки (IAR, GCC и т.д.) и аппаратным платфор­мам (например, AtmelSAM7S64,MSP430F449). К примеру, поддиректория /Source/Portable/ GCC/ATMega323 содержит файлы port.c и portmacro.h, реализующие сохранение/вос­становление контекста задачи, инициализа­цию таймера для создания временной базы, инициализацию стека каждой задачи и дру­гие аппаратно-зависимые функции для ми­кроконтроллеров семейства mega AVR и ком­пилятора WinAVR (GCC).

Отдельно следует выделить поддиректорию /Source/Portable/MemMang , в которой со­держатся файлы heap_l.c, heap_2.c, heap_3.c , реализующие 3 различных механизма вы­деления памяти для нужд FreeRTOS, которые будут подробно описаны позже.

В директории /Demo находятся готовые к компиляции и сборке демонстрационные проекты. Общая часть кода для всех демонстра­ционных проектов выделена в поддиректо­рию /Demo/Commo n.

Чтобы использовать FreeRTOS в своем про­екте, необходимо включить в него файлы ис­ходного кода ядра и сопутствующие заголо­вочные файлы. Нет необходимости модифи­цировать их или понимать их реализацию.

Например, если планируется использо­вать порт для микроконтроллеров MSP430 и GCC-компилятор, то для создания проекта -с нуля» понадобятся поддиректории /Source/ Portable/GCC/MSP430_GCC и /Source/Portable/ MemMang . Все остальные поддиректории из директории /Source/Portable не нужны и мо­гут быть удалены.

Если же планируется модифицировать существующий демонстрационный проект (что, собственно, и рекомендуется сделать в начале изучения FreeRTOS), то понадобят­ся также поддиректории /Demo/msp430_GCC и /Demo/Common . Остальные поддиректо­рии, находящиеся в /Demo, не нужны и могут быть удалены.

При создании приложения рекомендует­ся использовать makefile (или файл проекта среды разработки) от соответствующего демонстрационного проекта как отправную точку. Целесообразно исключить из сборки (build) файлы из директории /Demo, заменив их своими, а файлы из директории /Source - нетронутыми. Следует упомянуть также о заголовочном файле FreeRTOSConfig.h , который находит­ся в каждом демонстрационном проекте. FreeRTOSConfig.h содержит определения (#define), позволяющие произвести настройку ядра FreeRTOS:

1. Набор системных функций.

2. Использование сопрограмм.

3. Количество приоритетов задач и сопрограмм

4. Размеры памяти (стека и кучи).

5. Тактовая частота МК.

6. Период работы планировщика времени, выделяемый каждой задаче выполнения, который обычно равен 1 мс. Отключение некоторых системных функций и уменьшение количества приоритетов (уменьшает расход памяти).

В дистрибутив FreeRTOS включены также средства для конвертирования трассировочной информации, полученной от планировщика, в текстовую форму (ди­ректория /ТгасеСоn ) и текст лицензии (директория /License ).

Выводы

С помощью первой статьи цикла читатель познакомился с операционной системой ля микроконтроллеров FreeRTOS. Показаны особенности работы. Описапо содержимое дистрибутива FreeRTOS. Приведены основные шаги, с которых следует начинать разработку устройства, работающего под управлением FreeRTOS.

В следующих публикациях внимание бу­дет уделено механизму многозадачности, а именно задачам и сопрограммам. Будет приведен образец работы планировщика на примере микроконтроллеров AVR фирмы Atmel и компилятора WinAVR (GCC).

Я постоянно задаюсь этим вопросом, во время занятий своим хобби, – разработкой домашней системы автоматического контроля (умного дома), основанной на 16-битном микроконтроллере, – действительно ли это верный подход? Полтора месяца назад, я уже писал в своем блоге на тему «Микроконтроллеры против систем-на-чипе» . Так вот, я опять собираюсь писать об этом.

Частично к этому меня побудило появление в продаже Stellaris Launchpad и Arduino Due . Они оба основаны на 32-битных микроконтроллерах, и во многом, очень похожи. Я изучил спецификации (datasheet) к обоим, и хотя они прилично отличаются по цене, они рассчитаны на одну целевую аудиторию. Я задумывался о том, что возможно мне стоит перейти с MSP430 на Stellaris, а может быть даже пересесть на принципиально иную систему, использовать что-то вроде Raspberry Pi, вместо микроконтроллеров.

Оба, Stellaris Launchpad и Arduino Due, очень мощны, но не предназначены для запуска Linux. Они работают либо на исполняемом коде, написанном непосредственно для них, либо под управлением операционной системы реального времени (RTOS), – минималистичной ОС, с очень коротким временем реакции на внешние события. Так же они оба значительно сложнее, чем MSP430 или 8-битные AVR.

C другой стороны, в реальной жизни (за границами интернета), большинство, кого я знаю, используют Raspberry Pi или другие встраиваемые системы на Linux. Использование именно микроконтроллеров, довольно редкий случай, среди тех, кого я встречал. Даже Arduino, гораздо менее популярно, в моем окружении, чем встраиваемый Linux. Как я это понимаю, – зачем кому-то покупать Arduino, когда можно приобрести Raspberry Pi, который может гораздо больше, а стоит столько же или меньше? Под Linux есть огромное количество готового софта, и на нем можно программировать, используя простые скриптовые языки.

Лично для меня, причина, по которой я не желаю использовать Linux, это потому что я ежедневно использую его на работе, и возвращаясь домой, не испытываю удовольствия от необходимости опять работать на Linux-подобных системах. У меня нет проблем с использованием Linux, но его слишком много повсюду, он меня гнетет. Мне гораздо интересней работать с простыми электронными устройствами на 8-ми / 16-битных микрочипах.

Тем не менее, я не отворачиваюсь от реальности. Если я хочу оставаться на одной волне с реальным миром, я должен использовать те инструменты, которые используют в реальном мире. Иначе, это похоже на желание водить машину с паровым двигателем, лишь потому, что двигатель внутреннего сгорания слишком обыденный, я его итак все время использую. Если окружающий мир переходит на более продвинутую технологию, необходимо освоить ее, нравиться мне это или нет. В особенности, если я хочу, что бы мой блог был интересен людям и оставался релевантным.

В моем проекте умного дома, я реально столкнулся с этой проблемой. Я уже сделал драйвер локальной сети для системы контроля на MSP430, и все выглядит очень достойно. По сути, я могу сделать все, что необходимо для системы автоматизации на MSP430. Тем не менее, я задумываюсь, правильно ли то, как я это делаю? Не пытаюсь ли я, есть суп вилкой, когда есть ложка? Может быть, Linux более походящая система? Позвольте, я объясню.

Если остановиться и взглянуть на текущую ситуацию, по технологическим достижениям на ноябрь 2012 года. Я спрашиваю себя, достаточно ли хороши и актуальны микроконтроллеры, по сравнению с системами-на-чипе, использующими Linux?

Если перечислять проекты на встраиваемых системах, которые приходят мне в голову, это: дроны, роботы, домашняя автоматизация, контроллеры моторов, сенсоры, наручные часы, 3D-принтеры и т.п. В каких из этих случаев, встраиваемый Linux подходит больше, чем микроконтроллеры? И почему?

Я так считаю, что есть три ситуации, когда микроконтроллер лучший выбор: там, где важна моментальная (realtime) реакция на события; там, где необходимо экстремально низкое потребление энергии; и там, где нужно использовать микросхемы максимально низкой стоимости.

Для начала, использование дешевых микросхем, не столь важный для меня момент. Я занимаюсь моим хобби для себя и не собираюсь когда-либо выпускать конкурентно-способные продукты. Мне не приходиться обдумывать перенос производства на завод, использующий рабский труд, дабы иметь конкурентную цену для тех мелких проектов, которые я разрабатываю. Я был бы счастлив, если бы смог, распаивать более одной платы в день, благодаря своим способностям!

Например, для проекта умного дома, я могу разработать, дистанционно контролируемый выключатель. Он может включать/выключать свет или что-то еще. В тоже время, я могу пойти в местный магазин электротехники и купить то же самое за $20, произведенное в Китае. Смогу ли я когда-нибудь перебить эту цену, попытавшись продавать собственный выключатель? Не думаю, что это возможно.

Если задуматься, это относится и к множеству остальных вещей, необходимых для домашней автоматизации. Датчики температуры, дыма, движения и т.д., я вполне способен самостоятельно сделать такие же, но вряд ли, из этого можно извлечь финансовую выгоду. Кому интересно покупать такие вещи у меня за $75, когда они могут найти их за $20 в Хозтоварах?

Если размышлять об извлечении какой-то выгоды из своего хобби, то лучше обратить внимание на более дорогие и сложные продукты. Например, контроллер домашней автоматизации или термостат, обычно стоят более $100, и оставляют больше свободы для индивидуального творчества, можно построить один, продать своим соседям и даже заработать что-то на этом.

Но желание, добиться более выгодной цены окончательного устройства, не означает, что нужно использовать самый дешевый микроконтроллер на Земле. На самом деле, это плохая идея, т.к. время разработки то же имеет свою стоимость, как и используемые детали. Возможно, микроконтроллер дешев, но требует больше времени для написания управляющего кода. Время – деньги, и если вы работаете быстрее, вы успеете большего добиться.

Все эти размышления, подводят меня к выводу, что выгодней разрабатывать систему умного дома на Linux, чем на микроконтроллерах, несмотря на мои личные предпочтения, не использовать Linux (мне нравится программирование низкого уровня больше чем скрипты, Linux нагоняет на меня скуку).

Если вернуться к теме топика, цена микроконтроллеров, это может быть важный фактор для крупных корпораций, собирающихся выпустить новый продукт, но на индивидуальном уровне, если пытаться вести бизнес в стиле Kickstarter, этот фактор уже не столь значим, по факту, быстрое время разработки, более важно, чем стоимость компонентов.

С другой стороны, микроконтроллеры могут быть лучшим выбором, чем системы-на-чипе, когда необходимо низкое потребление энергии. В таких системах есть два момента: низкое потребление самой схемы, во время работы, и короткое время старта. Типичным способом экономии батареи для мелких устройств, является само-отключение (shut off). Когда вы выключаете компьютер на Linux, ему нужно приличное время, что бы вернуться к работе, иногда до нескольких минут. Такое время не приемлемо для встраиваемых систем.

Если взять такой микроконтроллер, как MSP430, то он может годами работать от одной батарейки. Stellaris Launchpad и Arduino Due, в принципе то же на такое способны, они потребляют больше энергии чем MSP430, но все-равно очень мало, по сравнению с Raspberry Pi. Еще, MSP430, может моментально стартовать, после выключения.

Таким образом, я абсолютно уверен, что во всех ситуациях, где необходимы низковольтные операции, имеет смысл использовать микроконтроллеры. Существует большое количество разнообразных устройств, работающих на батарейках, где возникает такая необходимость.

В третьем случае, как я уже говорил, использование микроконтроллера более осмысленно, чем Linux, в операциях требующих моментальной реакции (realtime response). Я имею в виду такие устройства, как 3D-принтеры и станки ЧПУ, я знаю, о чем говорю, так как посвятил много времени их изучению. По своей природе, они требуют высокой точности в работе, которая чуть менее чем полностью зависит от времени реакции на команды.

Например, если у вас запущена циркулярная пила, которая отрезает в данный момент кусок дерева или метала, вы не можете остановить процесс, из-за того что компьютеру который ей управляет, понадобилась пауза, что бы скинуть данные из памяти на диск или что-то иное в том же духе. Любой, кто использовал ПК, знаком со случайными подвисаниями, периодически возникающими во время самой обычной работы. А теперь представьте себе, что у вас большой сверлильный станок, под управлением ПК, который вдруг начинает проверять обновления для Windows, во время работы, и дрель, сверлит насквозь стол, на котором стоит, т.к. компьютер потерял над ней контроль.

ПК и системы-на-чипе не предназначены для работы в реальном времени, хоть с Windows, хоть с Linux, но само собой они пытаются к этому приблизиться. Как пример, существует патч реального времени для ядра Linux, и специальный ЧПУ софт, созданный для работы такого рода. Я не достаточно знаком с этим патчем Linux, и не знаю, насколько он гибок, для полного контроля событий реального времени. Но думаю, что это лишь возможная альтернатива, т.к. Linux, какие бы патчи на него не навешали, никогда не побьет микроконтроллеры в этой области, благодаря наличию у них системы прерываний.
В заключение, хочу сказать, что потратил много времени, пытаясь найти области, где применение микроконтроллеров в моих проектах имеет преимущество. И все выглядит так, что пришла эпоха мирового доминирования Raspberry Pi и Beaglebones. Это текущая ситуация в DIY сообществе. В большинстве случаев, быстрее и легче разрабатывать на этих системах, так что зачастую это лучший выбор для большинства проектов.

Для микроконтроллеров остаются только области низковольтных устройств, операций реального времени и устройств низкой стоимости.

Это не зависит от того, что микроконтроллеры могут казаться «веселее» чем ПК. Это то, с чем придется смириться.

Перевод с английского языка оригинального поста