20 методы передачи данных на физическом уровне. Передача дискретных данных на физическом уровне

7. ФИЗИЧЕСКИЙ УРОВЕНЬ ПЕРЕДАЧИ ДАННЫХ

7.2. Методы передачи дискретных данных

При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования - на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импульсов. Первый способ часто называется также модуляцией или аналоговой модуляцией , подчеркивая тот факт, что кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй способ называют цифровым кодированием . Эти способы отличаются шириной спектра результирующего сигнала и сложностью аппаратуры, необходимой для их реализации.

При использовании прямоугольных импульсов спектр результирующего сигнала получается весьма широким. Применение синусоиды приводит к более узкому спектру при той же скорости передачи информации. Однако для реализации модуляции требуется более сложная и дорогая аппаратура, чем для реализации прямоугольных импульсов.

В настоящее время все чаще данные, изначально имеющие аналоговую форму - речь, телевизионное изображение, - передаются по каналам связи в дискретном виде, то есть в виде последовательности единиц и нулей. Процесс представления аналоговой информации в дискретной форме называется дискретной модуляцией .

Аналоговая модуляция применяется для передачи дискретных данных по каналам с узкой полосой частот – канал тональной частоты (общественные телефонные сети). Этот канал передает частоты в диапазоне от 300 до 3400 Гц, таким образом, его полоса пропускания равна 3100 Гц.

Устройство, которое выполняет функции модуляции несущей синусоиды на передающей стороне и демодуляции на приемной стороне, носит название модем (модулятор-демодулятор ).

Аналоговая модуляция является таким способом физического кодирования, при котором информация кодируется изменением амплитуды, частоты или фазы синусоидального сигнала несущей частоты (рис. 27).

При амплитудной модуляции (рис. 27, б) для логической единицы выбирается один уровень амплитуды синусоиды несущей частоты, а для логического нуля - другой. Этот способ редко используется в чистом виде на практике из-за низкой помехоустойчивости, но часто применяется в сочетании с другим видом модуляции - фазовой модуляцией.

При частотной модуляции (рис. 27, в) значения 0 и 1 исходных данных передаются синусоидами с различной частотой – f 0 и f 1 ,. Этот способ модуляции не требует сложных схем в модемах и обычно применяется в низкоскоростных модемах, работающих на скоростях 300 или 1200 бит/с .

При фазовой модуляции (рис. 27, г) значения данных 0 и 1 соответствуют сигналам одинаковой частоты, но с различной фазой, например 0 и 180 градусов или 0, 90, 180, и 270 градусов.

В скоростных модемах часто используются комбинированные методы модуляции, как правило, амплитудная в сочетании с фазовой.

Рис. 27. Различные типы модуляции

Спектр результирующего модулированного сигнала зависит от типа и скорости модуляции.

Для потенциального кодирования спектр непосредственно получается из формул Фурье для периодической функции. Если дискретные данные передаются с битовой скоростью N бит/с, то спектр состоит из постоянной составляющей нулевой частоты и бесконечного ряда гармоник с частотами f 0 , 3f 0 , 5f 0 , 7f 0 , ... , где f 0 = N/2. Амплитуды этих гармоник убывают достаточно медленно - с коэффициентами 1/3, 1/5, 1/7, ... от амплитуды гармоники f 0 (рис. 28, а). В результате спектр потенциального кода требует для качественной передачи широкую полосу пропускания. Кроме того, нужно учесть, что реально спектр сигнала постоянно меняется в зависимости от характера данных. Поэтому спектр результирующего сигнала потенциального кода при передаче произвольных данных занимает полосу от некоторой величины, близкой к 0 Гц, до примерно 7f 0 (гармониками с частотами выше 7f 0 можно пренебречь из-за их малого вклада в результирующий сигнал). Для канала тональной частоты верхняя граница при потенциальном кодировании достигается для скорости передачи данных в 971 бит/с . В результате потенциальные коды на каналах тональной частоты никогда не используются.

При амплитудной модуляции спектр состоит из синусоиды несущей частоты f с и двух боковых гармоник: (f с + f m ) и (f c – f m ), где f m – частота изменения информационного параметра синусоиды, которая совпадает со скоростью передачи данных при использовании двух уровней амплитуды (рис. 28, б). Частота f m определяет пропускную способность линии при данном способе кодирования. При небольшой частоте модуляции ширина спектра сигнала будет также небольшой (равной 2f m ), поэтому сигналы не будут искажаться линией, если ее полоса пропускания будет больше или равна 2f m . Для канала тональной частоты такой способ модуляции приемлем при скорости передачи данных не больше 3100/2=1550 бит/с. Если же для представления данных используются 4 уровня амплитуды, то пропускная способность канала повышается до 3100 бит/с .


Рис. 28. Спектры сигналов при потенциальном кодировании

и амплитудной модуляции

При фазовой и частотной модуляции спектр сигнала получается более сложным, чем при амплитудной модуляции, так как боковых гармоник здесь образуется более двух, но они также симметрично расположены относительно основной несущей частоты, а их амплитуды быстро убывают. Поэтому эти виды модуляции также хорошо подходят для передачи данных по каналу тональной частоты.

При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды. В потенциальных кодах для представления логических единиц и нулей используется только значение потенциала сигнала, а его перепады во внимание не принимаются. Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо частью импульса - перепадом потенциала определенного направления.

При использовании прямоугольных импульсов для передачи дискретной информации необходимо выбрать такой способ кодирования, который одновременно достигал бы нескольких целей:

· имел при одной и той же битовой скорости наименьшую ширину спектра результирующего сигнала;

· обеспечивал синхронизацию между передатчиком и приемником;

· обладал способностью распознавать ошибки;

· обладал низкой стоимостью реализации.

Более узкий спектр сигналов позволяет на одной и той же линии добиваться более высокой скорости передачи данных. Часто к спектру сигнала предъявляется требование отсутствия посто­янной составляющей.

Синхронизация передатчика и приемника нужна для того, чтобы приемник точно знал, в какой момент времени необходимо считывать новую информацию с линии связи. Эта проблема в сетях решается сложнее, чем при обмене данными между близко расположенными устройствами, например, между блоками внутри компьютера или же между компьютером и принтером. Поэтому в сетях применяются так называемые самосинхронизирующиеся коды, сигналы которых несут для передатчика указания о том, в какой момент времени нужно осуществлять распознавание очередного бита (или нескольких бит). Любой резкий перепад сигнала - так называемый фронт - может служить хорошим указанием для синхронизации приемника с передатчиком.

При использовании синусоид в качестве несущего сигнала результирующий код обладает свойством самосинхронизации, так как изменение амплитуды несущей частоты дает возможность приемнику определить момент появления входного кода.

Требования, предъявляемые к методам кодирования, являются взаимно противоречивыми, поэтому каждый из рассматриваемых ниже популярных методов цифрового кодирования обладает своими преимуществами и своими недостатками по сравнению с другими.

На рис. 29, а показан метод потенциального кодирования, называемый также кодированием без возвращения к нулю (Non Return to Zero , NRZ ) . Последнее название отражает то обстоятельство, что при передаче последовательности единиц сигнал не возвращается к нулю в течение такта. Метод NRZ прост в реализации, обладает хорошей распознаваемостью ошибок (из-за двух резко отличающихся потенциалов), но не обладает свойством самосинхронизации. При передаче длинной последовательности единиц или нулей сигнал на линии не изменяется, поэтому приемник лишен возможности определять по входному сигналу моменты времени, когда нужно считывать данные. Даже при наличии высокоточного тактового генератора приемник может ошибиться с моментом съема данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита.

Другим серьезным недостатком метода NRZ является наличие низкочастотной составляющей, которая приближается к нулю при передаче длинных последовательностей единиц или нулей. Из-за этого многие каналы связи, не обеспечивающие прямого гальванического соединения между приемником и источником, этот вид кодирования не поддерживают. В результате в чистом виде код NRZ в сетях не используется. Тем не менее используются его различные модификации, в которых устраняют как плохую самосинхронизацию кода NRZ, так и наличие постоянной составляющей. Привлекательность кода NRZ, из-за которой имеет смысл заняться его улучшением, состоит в достаточно низкой частоте основной гармоники f 0 , ко­торая равна N/2 Гц. У других мето­дов кодирования, например манчестерского, основная гармоника имеет более высокую частоту.

Рис. 29. Способы дискретного кодирования данных

Одной из модификаций метода NRZ является метод биполярного кодирования с альтернативной инверсией (Bipolar Alternate Mark Inversion , AMI ). В этом методе (рис. 29, б) используются три уровня потенциала - отрицательный, нулевой и положительный. Для кодирования логического нуля используется нулевой потенциал, а логическая единица кодируется либо положительным потенциалом, либо отрицательным, при этом потенциал каждой новой единицы противоположен потенциалу предыдущей.

Код AMI частично ликвидирует проблемы постоянной составляющей и отсутствия самосинхронизации, присущие коду NRZ. Это происходит при передаче длинных последовательностей единиц. В этих случаях сигнал на линии представляет собой последовательность разнополярных импульсов с тем же спектром, что и у кода NRZ, передающего чередующиеся нули и единицы, то есть без постоянной составляющей и с основной гармоникой N/2 Гц (где N - битовая скорость передачи данных). Длинные же последовательности нулей также опасны для кода AMI, как и для кода NRZ - сигнал вырождается в постоянный потенциал нулевой амплитуды. Поэтому код AMI требует дальнейшего улучшения.

В целом, для различных комбинаций бит на линии использование кода AMI приводит к более узкому спектру сигнала, чем для кода NRZ, а значит, и к более высокой пропускной способности линии. Например, при передаче чередующихся единиц и нулей основная гармоника f 0 имеет частоту N/4 Гц. Код AMI предоставляет также некоторые возможности по распознаванию ошибочных сигналов. Так, нарушение строгого чередования полярности сигналов говорит о ложном импульсе или исчезновении с линии корректного импульса. Такой сигнал называется запрещенным сигналом (signal violation ).

В коде AMI используются не два, а три уровня сигнала на линии. Дополнительный уровень требует увеличения мощности передатчика примерно на З дБ для обеспечения той же достоверности приема бит на линии, что является общим недостатком кодов с несколькими состояниями сигнала по сравнению с кодами, которые различают только два состояния.

Существует код, похожий на AMI, но только с двумя уровнями сигнала. При передаче нуля он передает потенциал, который был установлен в предыдущем такте (то есть не меняет его), а при передаче единицы потенциал инвертируется на противоположный. Этот код называется потенциальным кодом с инверсией при единице (Not Return to Zero with ones Inverted , NRZI ) . Этот код удобен в тех случаях, когда использование третьего уровня сигнала весьма нежелательно, например, в оптических кабелях, где устойчиво распознаются два состояния сигнала - свет и тень.

Кроме потенциальных кодов в сетях используются и импульсные коды, когда данные представлены полным импульсом или же его частью - фронтом. Наиболее простым случаем такого подхода является биполярный импульсный код , в котором единица представлена импульсом одной полярности, а ноль - другой (рис. 29, в). Каждый импульс длится половину такта. Такой код обладает отличными самосинхронизирующими свойствами, но постоянная составляющая может присутствовать, например, при передаче длинной последовательности единиц или нулей. Кроме того, спектр у него шире, чем у потенциальных кодов. Так, при передаче всех нулей или единиц частота основной гармоники кода будет равна N Гц, что в два раза выше основной гармоники кода NRZ и в четыре раза выше основной гармоники кода AMI при передаче чередующихся единиц и нулей. Из-за слишком широкого спектра биполярный импульсный код используется редко.

В локальных сетях до недавнего времени самым распространенным методом кодирования был так называемый манчестерский код (рис. 29, г). Он применяется в технологиях Ethernet и Token Ring .

В манчестерском коде для кодирования единиц и нулей используется перепад потенциала, то есть фронт импульса. При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала, происходящими в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому , а ноль - обратным перепадом. В начале каждого такта может происходить служебный перепад сигнала, если нужно представить несколько единиц или нулей подряд. Так как сигнал изменяется, по крайней мере, один раз за такт передачи одного бита данных, то манчестерский код обладает хорошими самосинхронизирующими свойствами. Полоса пропускания манчестерского кода уже, чем у биполярного импульсного. У него также нет постоянной составляющей, а основная гармоника в худшем случае (при передаче последовательности единиц или нулей) имеет частоту N Гц, а в лучшем (при передаче чередующихся единиц и нулей) она равна N/2 Гц, как и у кодов AMI или NRZ. В среднем ширина полосы манчестерского кода в полтора раза уже, чем у биполярного импульсного кода, а основная гармоника колеблется вблизи значения 3N/4. Манчестерский код имеет еще одно преимущество перед биполярным импульсным кодом. В последнем для передачи данных используются три уровня сигнала, а в манчестерском - два.

На рис. 29, д показан потенциальный код с четырьмя уровнями сигнала для ко­дирования данных. Это код 2В1Q, название которого отражает его суть - каждые два бита (2В) передаются за один такт сигналом, имеющим четыре состояния (1Q). Паре бит 00 соответствует потенциал -2,5 В , паре бит 01 соответствует потенциал -0,833 В, паре 11 - потенциал +0,833 В, а паре 10 - потенциал +2,5 В. При этом способе кодирования требуются дополнительные меры по борьбе с длинными по­следовательностями одинаковых пар бит, так как при этом сигнал превращается в постоянную составляющую. При случайном чередовании бит спектр сигнала в два раза уже, чем у кода NRZ, так как при той же битовой скорости длительность такта увеличивается в два раза. Таким образом, с помощью кода 2В1Q можно по одной и той же линии передавать данные в два раза быстрее, чем с помощью кода AMI или NRZI. Однако для его реализации мощность передатчика должна быть выше, что­бы четыре уровня четко различались приемником на фоне помех.

При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования -на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импульсов. Первый способ часто называется так­жемодуляцией илианалоговой модуляцией, подчеркивая тот факт, что кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй способ обычно называютцифровым кодированием. Эти способы отличаются шириной спектра результирующего сигнала и сложностью аппаратуры, необходимой для их реализации.

При использовании прямоугольных импульсов спектр результирующего сигна­ла получается весьма широким. Это не удивительно, если вспомнить, что спектр идеального импульса имеет бесконечную ширину. Применение синусоиды приво­дит к спектру гораздо меньшей ширины при той же скорости передачи информа­ции. Однако для реализации синусоидальной модуляции требуется более сложная и дорогая аппаратура, чем для реализации прямоугольных импульсов.

В настоящее время все чаще данные, изначально имеющие аналоговую форму - речь, телевизионное изображение, -передаются по каналам связи в дискретном виде, то есть в виде последовательности единиц и нулей. Процесс представления аналоговой информации в дискретной форме называетсядискретной модуляцией. Термины «модуляция» и «кодирование» часто используют как синонимы.

При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды. В потенциальных кодах для представления логических единиц и нулей исполь­зуется только значение потенциала сигнала, а его перепады, формирующие закон­ченные импульсы, во внимание не принимаются. Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо частью импульса -перепадом потенциала определенного направления.

При использовании прямоугольных импульсов для передачи дискретной инфор­мации необходимо выбрать такой способ кодирования, который одновременно до­стигал бы нескольких целей: имел при одной и той же битовой скорости наименьшую ширину спектра ре­зультирующего сигнала; обеспечивал синхронизацию между передатчиком и приемником;

Обладал способностью распознавать ошибки; обладал низкой стоимостью реализации.

В сетях применяются так называемые самосинхронизирующиеся коды, сигналы которых несут для передатчика указания о том, в какой момент времени нужно осуществлять распознавание очередного бита (или нескольких бит, если код ориентирован более чем на два состояния сигнала). Любой резкий перепад сигнала -так называемый фронт -может служить хорошим указанием для синх­ронизации приемника с передатчиком. Распознавание и коррекцию искаженных данных сложно осуществить средствами физического уровня, поэтому чаще всего эту работу берут на себя протоколы, ле­жащие выше: канальный, сетевой, транспортный или прикладной. С другой сторо­ны, распознавание ошибок на физическом уровне экономит время, так как приемник не ждет полного помещения кадра в буфер, а отбраковывает его сразу при распо- . знавании ошибочных бит внутри кадра.

Потенциальный код без возвращения к нулю, метод потенциального кодирования, называемый также кодированием без возвращения к нулю (Non Return to Zero , NRZ ). Последнее название отражает то обстоятельство, что при передаче последователь­ности единиц сигнал не возвращается к нулю в течение такта (как мы увидим ниже, в других методах кодирования возврат к нулю в этом случае происходит). Метод NRZпрост в реализации, обладает хорошей распознаваемостью ошибок (из-за двух резко отличающихся потенциалов), но не обладает свойством самосинхро­низации. При передаче длинной последовательности единиц или нулей сигнал на линии не изменяется, поэтому приемник лишен возможности определять по вход­ному сигналу моменты времени, когда нужно в очередной раз считывать данные. Даже при наличии высокоточного тактового генератора приемник может ошибиться с моментом съема данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длин­ных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию не­корректного значения бита.

Метод биполярного кодирования с альтернативной инверсией. Одной из модификаций метода NRZявляется методбиполярного кодирования с альтернативной инверсией (Bipolar Alternate Mark Inversion , AMI ). В этом методе используются три уровня потенциала -отрицательный, нулевой и положительный. Для кодирования логического нуля используется нулевой потен­циал, а логическая единица кодируется либо положительным потенциалом, либо отрицательным, при этом потенциал каждой новой единицы противоположен по­тенциалу предыдущей. Так, нарушение строгого чередования полярности сигналов говорит о ложном импуль­се или исчезновении с линии корректного импульса. Сигнал с некорректной по­лярностью называетсязапрещенным сигналом (signal violation ). В кодеAMIиспользуются не два, а три уровня сигнала на линии. Дополнитель­ный уровень требует увеличение мощности передатчика примерно на 3дБ для обеспечения той же достоверности приема бит на линии, что является общим недо­статком кодов с несколькими состояниями сигнала по сравнению с кодами, кото­рые различают только два состояния.

Потенциальный код с инверсией при единице. Существует код, похожий на AMI, но только с двумя уровнями сигнала. При пере­даче нуля он передает потенциал, который был установлен в предыдущем такте (то есть не меняет его), а при передаче единицы потенциал инвертируется на противоположный. Этот код называетсяпотенциальным кодом с инверсией при единице (Non Return to Zero with ones Inverted , NRZI ). Этот код удобен в тех случаях, когда использование третьего уровня сигнала весьма нежелательно, например в оптичес­ких кабелях, где устойчиво распознаются два состояния сигнала -свет и темнота.

Биполярный импульсный код Кроме потенциальных кодов в сетях используются и импульсные коды, когда дан­ные представлены полным импульсом или же его частью -фронтом. Наиболее простым случаем такого подхода являетсябиполярный импульсный код, в котором единица представлена импульсом одной полярности, а ноль -другой. Каждый импульс длится половину такта. Такой код обладает отличными самосин­хронизирующими свойствами, но постоянная составляющая может присутство­вать, например, при передаче длинной последовательности единиц или нулей. Кроме того, спектр у него шире, чем у потенциальных кодов. Так, при передаче всех нулей или единиц частота основной гармоники кода будет равна NГц, что в два раза выше основной гармоники кода NRZи в четыре раза выше основной гармоники кодаAMIпри передаче чередующихся единиц и нулей. Из-за слишком широкого спектра биполярный импульсный код используется редко.

Манчестерский код. В локальных сетях до недавнего времени самым распространенным методом коди­рования был так называемыйманчестерский код. Он применяется в технологияхEthernetиTokenRing. В манчестерском коде для кодирования единиц и нулей используется перепад потенциала, то есть фронт импульса. При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала, про­исходящими в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому, а ноль -обратным перепадом. В начале каждого такта может происходить служебный перепад сигнала, если нужно представить несколь­ко единиц или нулей подряд. Так как сигнал изменяется по крайней мере один раз за такт передачи одного бита данных, то манчестерский код обладает хорошими самосинхронизирующими свойствами. Полоса пропускания манчестерского кода уже, чем у биполярного импульсного. В среднем ширина полосы манчестерского кода в полтора раза уже, чем у биполярного импульсного кода, а основная гармоника колеблется вблизи значения 3N/4. Манчестерский код имеет еще одно преимущество перед биполярным импульсным кодом. В последнем для передачи данных используются три уровня сигнала, а в манчестерском -два.

Потенциальный код 2В 1Q. Потенциальный код с четырьмя уровнями сигнала для ко­дирования данных. Это код2В 1 Q , название которого отражает его суть -каждые два бита (2В) передаются за один такт сигналом, имеющим четыре состояния (1Q). Паре бит 00соответствует потенциал -2,5В, паре бит 01соответствует потенциал-0,833В, паре 11 -потенциал +0,833В, а паре 10 -потенциал +2,5В. При этом способе кодирования требуются дополнительные меры по борьбе с длинными по­следовательностями одинаковых пар бит, так как при этом сигнал превращается в постоянную составляющую. При случайном чередовании бит спектр сигнала в два раза уже, чем у кода NRZ,так как при той же битовой скорости длительность такта увеличивается в два раза. Таким образом, с помощью кода 2В 1Qможно по одной и той же линии передавать данные в два раза быстрее, чем с помощью кодаAMIилиNRZI. Однако для его реализации мощность передатчика должна быть выше, что­бы четыре уровня четко различались приемником на фоне помех.

Логическое кодирование Логическое кодирование используется для улучшения потенциальных кодов типаAMI,NRZIили 2Q.1B. Логическое кодирование должно заменять длинные после­довательности бит, приводящие к постоянному потенциалу, вкраплениями единиц. Как уже отмечалось выше, для логического кодирования характерны два метода -. избыточные коды и скрэмблирование.

Избыточные коды основаны на разбиении исходной последовательности бит на порции, которые часто называют символами. Затем каждый исходный символ за­меняется на новый, который имеет большее количество бит, чем исходный.

Для обеспечения заданной пропускной способности линии передатчик, исполь­зующий избыточный код, должен работать с повышенной тактовой частотой. Так, для передачи кодов 4В/5В со скоростью 100Мб/с передатчик должен работать с тактовой частотой 125МГц. При этом спектр сигнала на линии расширяется по сравнению со случаем, когда по линии передается чистый, не избыточный код. Тем не менее спектр избыточного потенциального кода оказывается уже спектра манче­стерского кода, что оправдывает дополнительный этап логического кодирования, а также работу приемника и передатчика на повышенной тактовой частоте.

Скрэмблирование. Перемешивание данных скрэмблером перед передачей их в линию с помощью по­тенциального кода является другим способом логического кодирования. Методы скрэмблирования заключаются в побитном вычислении результирующего кода на основании бит исходного кода и полученных в предыдущих тактах бит резуль­тирующего кода. Например, скрэмблер может реализовывать следующее соотношение:

Асинхронная и синхронная передачи

При обмене данными на физическом уровне единицей информации является бит, поэтому средства физического уровня всегда поддерживают побитовую синхрони­зацию между приемником и передатчиком. Обычно достаточно обеспечить синхронизацию на указанных двух уровнях - битовом и кадровом, -чтобы передатчик и приемник смогли обеспечить устойчи­вый обмен информацией. Однако при плохом качестве линии связи (обычно это относится к телефонным коммутируемым каналам) для удешевления аппаратуры и повышения надежности передачи данных вводят дополнительные средства синх­ронизации на уровне байт.

Такой режим работы называется асинхронным илистарт-стопным. В асинхронном режиме каждый байт данных сопровождается специальными сиг­налами «старт» и «стоп». Назначение этих сигналов состоит в том, чтобы, во-первых, известить приемник о приходе данных и, во-вторых, чтобы дать приемнику достаточно времени для выполнения некоторых функций, связанных с синхронизацией, до поступления следующего байта. Сигнал «старт» имеет продол­жительность в один тактовый интервал, а сигнал «стоп» может длиться один, полто­ра или два такта, поэтому говорят, что используется один, полтора или два бита в качестве стопового сигнала, хотя пользовательские биты эти сигналы не представляют.

При синхронном режиме передачи старт-стопные биты между каждой парой байт отсутствуют. Выводы

При передаче дискретных данных по узкополосному каналу тональной часто­ты, используемому в телефонии, наиболее подходящими оказываются способы аналоговой модуляции, при которых несущая синусоида модулируется исход­ной последовательностью двоичных цифр. Эта операция осуществляется спе­циальными устройствами -модемами.

Для низкоскоростной передачи данных применяется изменение частоты несу­щей синусоиды. Более высокоскоростные модемы работают на комбинирован­ных способах квадратурной амплитудной модуляции (QAM), для которой характерны 4уровня амплитуды несущей синусоиды и 8уровней фазы. Не все из возможных 32сочетаний методаQAMиспользуются для передачи данных, запрещенные сочетания позволяют распознавать искаженные данные на физи­ческом уровне.

На широкополосных каналах связи применяются потенциальные и импульс­ные методы кодирования, в которых данные представлены различными уров­нями постоянного потенциала сигнала либо полярностями импульса или его фронта.

При использовании потенциальных кодов особое значение приобретает задача синхронизации приемника с передатчиком, так как при передаче длинных по­следовательностей нулей или единиц сигнал на входе приемника не изменяется и приемнику сложно определить момент съема очередного бита данных.

Наиболее простым потенциальным кодом является код без возвращения к нулю (NRZ), однако он не является самосинхронизирующимся и создает постоянную составляющую.

Наиболее популярным импульсным кодом является манчестерский код, в кото­ром информацию несет направление перепада сигнала в середине каждого так­та. Манчестерский код применяется в технологиях EthernetиTokenRing.

Для улучшения свойств потенциального кода NRZиспользуются методы логи­ческого кодирования, исключающие длинные последовательности нулей. Эти методы основаны:

На введении избыточных бит в исходные данные (коды типа 4В/5В);

Скрэмблировании исходных данных (коды типа 2В 1Q).

Улучшенные потенциальные коды обладают более узким спектром, чем импульс­ные, поэтому они находят применение в высокоскоростных технологиях, таких как FDDI,FastEthernet,GigabitEthernet.

Перекрестные наводки на ближнем конце линии – определяют помехоустойчивость кабеля к внутренним источникам помех. Обычно они оцениваются применительно к кабелю, состоящему из нескольких витых пар, когда взаимные наводки одной пары на другую могут достигать значительных величин и создавать внутренние помехи, соизмеримые с полезным сигналом.

Достоверность передачи данных (или интенсивность битовых ошибок) характеризует вероятность искажения для каждого передаваемого бита данных. Причинами искажения информационных сигналов являются помехи на линии, а также ограниченность полосы ее пропускания. Поэтому повышение достоверности передачи данных достигается повышением степени помехозащищенности линии, снижением уровня перекрестных наводок в кабеле, использованием более широкополосных линий связи.

Для обычных кабельных линий связи без дополнительных средств защиты от ошибок достоверность передачи данных составляет, как правило, 10 -4 -10 -6 . Это значит, что в среднем из 10 4 или 10 6 передаваемых бит будет искажено значение одного бита.

Аппаратура линий связи (аппаратура передачи данных – АПД) является пограничным оборудованием, непосредственно связывающим компьютеры с линией связи. Она входит в состав линии связи и обычно работает на физическом уровне, обеспечивая передачу и прием сигнала нужной формы и мощности. Примерами АПД являются модемы, адаптеры, аналого-цифровые и цифро-аналоговые преобразователи.

В состав АПД не включается оконечное оборудование данных (ООД) пользователя, которое вырабатывает данные для передачи по линии связи и подключается непосредственно к АПД. К ООД относится, например, маршрутизатор локальных сетей. Заметим, что разделение оборудования на классы АПД и ООД является достаточно условным.

На линиях связи большой протяженности используется промежуточная аппаратура, которая решает две основные задачи: повышение качества информационных сигналов (их формы, мощности, длительности) и создание постоянного составного канала (сквозного канала) связи между двумя абонентами сети. В ЛКС промежуточная аппаратура не используется, если протяженность физической среды (кабелей, радиоэфира) невысока, так что сигналы от одного сетевого адаптера к другому можно передавать без промежуточного восстановления их параметров.

В глобальных сетях обеспечивается качественная передача сигналов на сотни и тысячи километров. Поэтому через определенные расстояния устанавливаются усилители. Для создания между двумя абонентами сквозной линии используются мультиплексоры, демультиплексоры и коммутаторы.

Промежуточная аппаратура канала связи прозрачна для пользователя (он ее не замечает), хотя в действительности она образует сложную сеть, называемую первичной сетью и служащую основой для построения компьютерных, телефонных и других сетей.



Различают аналоговые и цифровые линии связи , в которых используются различные типы промежуточной аппаратуры. В аналоговых линиях промежуточная аппаратура предназначена для усиления аналоговых сигналов, имеющих непрерывный диапазон значений. В высокоскоростных аналоговых каналах реализуется техника частотного мультиплексирования, когда несколько низкоскоростных аналоговых абонентских каналов мультиплексируют в один высокоскоростной канал. В цифровых каналах связи, где информационные сигналы прямоугольной формы имеют конечное число состояний, промежуточная аппаратура улучшает форму сигналов и восстанавливает период их следования. Она обеспечивает образование высокоскоростных цифровых каналов, работая по принципу временного мультиплексирования каналов, когда каждому низкоскоростному каналу выделяется определенная доля времени высокоскоростного канала.

При передаче дискретных компьютерных данных по цифровым линиям связи протокол физического уровня определен, так как параметры передаваемых линией информационных сигналов стандартизованы, а при передаче по аналоговым линиям – не определен, поскольку информационные сигналы имеют произвольную форму и к способу представления единиц и нулей аппаратурой передачи данных никаких требований не предъявляется.

В сетях связи нашли применение следующие режимы передачи информации :

· симплексные, когда передатчик и приемник связываются одним каналом связи, по которому информация передается только в одном направлении (это характерно для телевизионных сетей связи);

· полудуплексные, когда два узла связи соединены также одним каналом, по которому информация передается попеременно то в одном направлении, то в противоположном (это характерно для информационно-справочных, запрос-ответных систем);

· дуплексные, когда два узла связи соединены двумя каналами (прямым каналом связи и обратным), по которым информация одновременно передается в противоположных направлениях. Дуплексные каналы применяются в системах с решающей и информационной обратной связью.


Коммутируемые и выделенные каналы связи . В ТСС различают выделенные (некоммутируемые) каналы связи и с коммутацией на время передачи информации по этим каналам.

При использовании выделенных каналов связи приемопередающая аппаратура узлов связи постоянно соединена между собой. Этим обеспечивается высокая степень готовности системы к передаче информации, более высокое качество связи, поддержка большого объема трафика. Из-за сравнительно больших расходов на эксплуатацию сетей с выделенными каналами связи их рентабельность достигается только при условии достаточно полной загрузки каналов.

Для коммутируемых каналов связи, создаваемых только на время передачи фиксированного объема информации, характерны высокая гибкость и сравнительно небольшая стоимость (при малом объеме трафика). Недостатки таких каналов: потери времени на коммутацию (на установление связи между абонентами), возможность блокировки из-за занятости отдельных участков линии связи, более низкое качество связи, большая стоимость при значительном объеме трафика.

Исходная информация, которую необходимо передавать по линии связи, может быть либо дискретной (выходные данные компьютеров), либо аналоговой (речь, телевизионное изображение).

Передача дискретных данных базируется на использовании двух типов физического кодирования:

а) аналоговой модуляции , когда кодирование осуществляется за счет изменения параметров синусоидального несущего сигнала;

б) цифрового кодирования путем изменения уровней последовательности прямоугольных информационных импульсов.

Аналоговая модуляция приводит к спектру результирующего сигнала гораздо меньшей ширины, чем при цифровом кодировании, при той же скорости передачи информации, однако для ее реализации требуется более сложная и дорогая аппаратура.

В настоящее время исходные данные, имеющие аналоговую форму, все чаще передаются по каналам связи в дискретном виде (в виде последовательности единиц и нулей), т. е. осуществляется дискретная модуляция аналоговых сигналов.

Аналоговая модуляция . Применяется для передачи дискретных данных по каналам с узкой полосой частот, типичным представителем которых является канал тональной частоты, предоставляемый пользователям телефонных сетей. По этому каналу передаются сигналы с частотой от 300 до 3400 Гц, т. е. его полоса пропускания равна 3100 Гц. Такая полоса вполне достаточна для передачи речи с приемлемым качеством. Ограничение полосы пропускания тонального канала связано с использованием аппаратуры уплотнения и коммутации каналов в телефонных сетях.

Перед передачей дискретных данных на передающей стороне с помощью модулятора-демодулятора (модема) осуществляется модуляция несущей синусоиды исходной последовательности двоичных цифр. Обратное преобразование (демодуляция) выполняется принимающим модемом.

Возможны три способа преобразования цифровых данных в аналоговую форму, или три метода аналоговой модуляции:

· амплитудная модуляция, когда меняется только амплитуда несущей синусоидальных колебаний в соответствии с последовательностью передаваемых информационных битов: например, при передаче единицы амплитуда колебаний устанавливается большой, а при передаче нуля – малой, или сигнал несущей вообще отсутствует;

· частотная модуляция, когда под действием модулирующих сигналов (передаваемых информационных битов) меняется только частота несущей синусоидальных колебаний: например, при передаче нуля – низкая, а при передаче единицы – высокая;

· фазовая модуляция, когда в соответствии с последовательностью передаваемых информационных битов изменяется только фаза несущей синусоидальных колебаний: при переходе от сигнала 1 к сигналу 0 или наоборот фаза меняется на 180°.

В чистом виде амплитудная модуляция на практике используется редко из-за низкой помехоустойчивости. Частотная модуляция не требует сложных схем в модемах и обычно применяется в низкоскоростных модемах, работающих на скоростях 300 или 1200 бит/с. Повышение скорости передачи данных обеспечивается использованием комбинированных способов модуляции, чаще амплитудной в сочетании с фазовой.

Аналоговый способ передачи дискретных данных обеспечивает широкополосную передачу путем использования в одном канале сигналов различных несущих частот. Это гарантирует взаимодействие большого количества абонентов (каждая пара абонентов работает на своей частоте).

Цифровое кодирование . При цифровом кодировании дискретной информации используются два вида кодов:

а) потенциальные коды, когда для представления информационных единиц и нулей применяется только значение потенциала сигнала, а его перепады во внимание не принимаются;

б) импульсные коды, когда двоичные данные представляются либо импульсами определенной полярности, либо перепадами потенциала определенного направления.

К способам цифрового кодирования дискретной информации при использовании прямоугольных импульсов для представления двоичных сигналов предъявляются такие требования:

· обеспечение синхронизации между передатчиком и приемником;

· обеспечение наименьшей ширины спектра результирующего сигнала при одной и той же битовой скорости (так как более узкий спектр сигналов позволяет на линии с одной и той же полосой пропускания добиваться более высокой скорости передачи данных);

· возможность распознавания ошибок в передаваемых данных;

· относительно низкая стоимость реализации.

Средствами физического уровня осуществляется только распознавание искаженных данных (обнаружение ошибок), что позволяет экономить время, так как приемник, не ожидая полного помещения принимаемого кадра в буфер, сразу его отбраковывает при распознавании ошибочных бит в кадре. Более сложная операция – коррекция искаженных данных – выполняется протоколами более высокого уровня: канального, сетевого, транспортного или прикладного.

Синхронизация передатчика и приемника необходима для того, чтобы приемник точно знал, в какой момент следует осуществлять считывание поступающих данных. Синхросигналы настраивают приемник на передаваемое сообщение и поддерживают синхронизацию приемника с приходящими битами данных. Проблема синхронизации легко решается при передаче информации на небольшие расстояния (между блоками внутри компьютера, между компьютером и принтером) путем использования отдельной тактирующей линии связи: информация считывается только в момент прихода очередного тактового импульса. В компьютерных сетях отказываются от использования тактирующих импульсов по двум причинам: ради экономии проводников в дорогостоящих кабелях и из-за неоднородности характеристик проводников в кабелях (на больших расстояниях неравномерность скорости распространения сигналов может привести к рассинхронизации тактовых импульсов в тактирующей линии и информационных импульсов в основной линии, вследствие чего бит данных будет либо пропущен, либо считан повторно).

В настоящее время синхронизация передатчика и приемника в сетях достигается применением самосинхронизирующих кодов (СК). Кодирование передаваемых данных с помощью СК заключается в том, чтобы обеспечить регулярные и частые изменения (переходы) уровней информационного сигнала в канале. Каждый переход уровня сигнала от высокого к низкому или наоборот используется для подстройки приемника. Лучшими считаются такие СК, которые обеспечивают переход уровня сигнала не менее одного раза в течение интервала времени, необходимого на прием одного информационного бита. Чем чаще переходы уровня сигнала, тем надежнее осуществляется синхронизация приемника и увереннее производится идентификация принимаемых битов данных.

Указанные требования к способам цифрового кодирования дискретной информации являются в определенной степени взаимно противоречивыми, поэтому каждый из рассматриваемых ниже способов кодирования имеет свои преимущества и недостатки по сравнению с другими.

Самосинхронизирующие коды . Наиболее распространенными являются следующие СК:

· потенциальный код без возвращения к нулю (NRZ – Non Return to Zero);

· биполярный импульсный код (RZ-код);

· манчестерский код;

· биполярный код с поочередной инверсией уровня.

На рис. 32 представлены схемы кодирования сообщения 0101100 с помощью этих СК.

Рис. 32. Схемы кодирования сообщения с помощью самосинхронизирующих кодов

2 Функции физического уровня Представление битов электрическими/оптическими сигналами Кодирование битов Синхронизация битов Передача/прием битов по физическим каналам связи Согласование с физической средой Скорость передачи Дальность Уровни сигналов, разъемы Во всех устройствах сети Аппаратная реализация (сетевые адаптеры) Пример: 10 BaseT - UTP кат 3, 100 ом, 100м, 10Мбит/c, код МII, RJ-45






5 Аппаратура передачи данных Преобразователь Сообщение - Эл. сигнал Кодер (сжатие, корректирующие коды) Модулятор Промежуточная аппаратура Улучшение качества связи - (Усилитель) Создание составного канала – (Коммутатор) Уплотнение канала – (Мультиплексор) (В ЛВС ПА может отсутствовать)


6 Основные характеристики линий связи Пропускная способность (Протокол) Достоверность передачи данных(Протокол) Задержка распространения Амплитудно-частотная характеристика (АЧХ) Полоса пропускания Затухание Помехоустойчивость Перекрестные наводки на ближнем конце линии Удельная стоимость






9 Затухание (Attenuation) А – одна точка на АЧХ A= log 10 Pout/Pin Bel A=10 log 10 Pout/Pin deciBel (dB) A=20 log 10 Uout/Uin deciBel (dB) q Example 1: Pin = 10 mW, Pout =5 mW Attenuation = 10 log 10 (5/10) = 10 log 10 0,5 = - 3 dB q Example 2: UTP cat 5 Attenuation >= -23,6 dB F= 100MГц, L= 100 М Обычно А указывается для основной частоты сигнала = -23,6 dB F= 100MГц, L= 100 М Обычно А указывается для основной частоты сигнала">




11 Помехоустойчивость Оптоволоконные линии Кабельные линии Проводные воздушные линии Радиолинии (Экранирование, скручивание) Устойчивость к внешним помехам Устойчивость к внутренним помехам Ослабление перекрестных наводок на ближнем конце (NEXT) Ослабление перекрестных наводок на дальнем конце (FEXT) (FEXT - Две пары в одном направлении)


12 Перекрестные наводки на ближнем конце (Near End Cross Talk loss – NEXT) Для многопарных кабелей NEXT = 10 log Pвых/Pнав dB NEXT = NEXT (L) UTP 5: NEXT


13 Достоверность передачи данных Bit Error Rate – BER Вероятность искажения бита данных Причины: внешние и внутренние помехи, узкая полоса пропускания Борьба: повышение помехозащищенности, снижение наводок NEXT, расширение полосы пропускания Витая пара BER ~ Оптоволоконный кабель BER ~ Без дополнительных средств защиты::корректирующих кодов, протоколов с повторением






16 Витая пара Twisted Pair (TP) экран из фольги плетеный проволочный экран провод в изоляции внешняя оболочка UTP Unshielded Twisted Pair категории 1, UTP кат пары в оболочке STP Shielded Twisted Pair Типы Type 1…9 У каждой пары свой экран Каждая пара - свой шаг скрутки, свой цвет Помехозащищенность Стоимость Сложность прокладки




18 Fiber Optics Полное внутреннее отражение луча на границе двух сред n1 > n2 - (показатель преломления) n1 n2 n2 - (показатель преломления) n1 n2"> n2 - (показатель преломления) n1 n2"> n2 - (показатель преломления) n1 n2" title="18 Fiber Optics Полное внутреннее отражение луча на границе двух сред n1 > n2 - (показатель преломления) n1 n2"> title="18 Fiber Optics Полное внутреннее отражение луча на границе двух сред n1 > n2 - (показатель преломления) n1 n2">








22 Волоконно-оптический кабель Multi Mode Fiber MMF50/125, 62,5/125, Single Mode FiberSMF8/125, 9,5/125 D = 250 мкм 1 ГГц – 100 км BaseLH5000км - 1 Гбит/с (2005 г) MMSM


23 Источники оптического сигнала Канал: источник - носитель - приемник (детектор) Источники Светодиод (LED- Light Emitting Diod) нм некогерентный источник - MMF Полупроводниковый лазер когерентный источник - SMF - Мощность = f (t o) Детекторы Фотодиоды, pin-диоды, лавинные диоды




25 Структурированные кабельные системы - СКС Structured Cabling System - SCS Первые ЛВС – различные кабели и топологии Унификация кабельной системы СКС – открытая кабельная инфраструктура ЛВС (подсистемы, компоненты, интерфейсы) - независимость от сетевой технологии - кабели ЛВС, TV, системы охраны и т.п. - универсальная кабельная проводка без привязки к конкретной сетевой технологии -Конструктор




27 Стандарты СКС (основные) EIA/TIA-568A Commercial Building Telecommunications Wiring Standard (США) CENELEC EN50173 Performance Requirements of Generic Cabling Schemes (Европа) ISO/IEC IS Information Technology - Generic cabling for customer premises cabling Для каждой подсистемы: Среда передачи данных. Топология Допустимые расстояния (длина кабелей) Интерфейс подключения пользователей. Кабели и соединительная аппаратура. Пропускная способность (Performance). Практика установки (Горизонтальная подсистема – UTP, звезда, 100 м...)


28 Беспроводная связь Wireless Transmission Достоинства: у добство, недоступные районы, мобильность. быстрое развертывание... Недостатки: в ысокий уровень помех (специальные средства: коды, модуляция…), сложность использования некоторых диапазонов Линия связи: передатчик - среда - приемник Характеристики ЛС ~ F(Δf, fн);









34 2. Cотовая телефония Разбиение территории на соты Повторное использование частот Малая мощность (габариты) В центре – базовая станция Европа – Global System for Mobile - GSM Беспроводная телефонная связь 1. Маломощная радиостанция – (трубка-база, 300м) DECT Digital European Cordless Telecommunication Роуминг - переключение с одной базовой сети на другую - основа сотовой связи


35 Спутниковая связь В основе – спутник (отражатель–усилитель) Приемопередатчики – транспондеры Н~50 Мгц (1 спутник ~ 20 транспондеров) Диапазоны частот: С. Ku, Ka C - Down 3,7 - 4,2 ГГц Up 5,925-6,425 ГГц Ku - Down 11,7-12,2 ГГц Up 14,0-14,5 ГГц Ka - Down 17,7-21,7 ГГц Up 27,5-30,5 ГГц


36 Спутниковая связь. Типы спутников Спутниковая связь: микроволны – прямая видимость Геостационарные Большое покрытие Неподвижность, Малый износ Cпутник-повторитель, широковещательность, низкая стоимость, стоимость не зависит от расстояния, Мгновенное установление связи (Mil) Tз=300мс Низкая защищенность, Первоначально большая антенна (но VSAT) Среднеорбитальные км Global Positioning System GPS - 24 спутника Низкоорбитальные км малое покрытие малая задержка Доступ в Интернет


40 Техника расширения спектра Специальные методы модуляции и кодирования для беспроводной связи С (Бит/с) = Δ F (Гц) * log2 (1+Ps/P N) Уменьшение мощности Помехоустойчивость Скрытность OFDM, FHSS (, Blue-Tooth), DSSS, CDMA

Страница 27 из 27 Физические основы передачи данных (Линии связи,)

Физические основы передачи данных

Любая сетевая технология должна обеспечить надежную и быструю передачу дискретных данных по линиям связи. И хотя между технологиями имеются большие различия, они базируются на общих принципах передачи дискретных данных. Эти принципы находят свое воплощение в методах представления двоичных единиц и нулей с помощью импульсных или синусоидальных сигналов в линиях связи различной физической природы, методах обнаружения и коррекции ошибок, методах компрессии и методах коммутации.

Линии связи

Первичные сети, линии и каналы связи

При описании технической системы, которая передает информацию между узлами сети, в литературе можно встретить несколько названий: линия связи, составной канал, канал, звено. Часто эти термины используются как синонимы, и во многих случаях это не вызывает проблем. В то же время есть и специфика в их употреблении.

    Звено (link) - это сегмент, обеспечивающий передачу данных между двумя соседними узлами сети. То есть звено не содержит промежуточных устройств коммутации и мультиплексирования.

    Каналом (channel) чаще всего обозначают часть пропускной способности звена, используемую независимо при коммутации. Например, звено первичной сети может состоять из 30 каналов, каждый из которых обладает пропускной способностью 64 Кбит/с.

    Составной канал (circuit) - это путь между двумя конечными узлами сети. Составной канал образуется отдельными каналами промежуточных звеньев и внутренними соединениями в коммутаторах. Часто эпитет «составной» опускается и термин «канал» используется для обозначения как составного канала, так и канала между соседними узлами, то есть в пределах звена.

    Линия связи может использоваться как синоним для любого из трех остальных терминов.

На рис. показаны два варианта линии связи. В первом случае (а) линия состоит из сегмента кабеля длиной несколько десятков метров и представляет собой звено. Во втором случае (б) линия связи представляет собой составной канал, развернутый в сети с коммутацией каналов. Такой сетью может быть первичная сеть или телефонная сеть.

Однако для компьютерной сети эта линия представляет собой звено, так как соединяет два соседних узла, и вся коммутационная промежуточная аппаратура является прозрачной для этих узлов. Повод для взаимного непонимания на уровне терминов компьютерных специалистов и специалистов первичных сетей здесь очевиден.

Первичные сети специально создаются для того, чтобы предоставлять услуги каналов передачи данных для компьютерных и телефонных сетей, про которые в таких случаях говорят, что они работают «поверх» первичных сетей и являются наложенными сетями.

Классификация линий связи

Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры. Физическая среда передачи данных (физические носители информации) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.

В первом случае говорят о проводной среде, а во втором - о беспроводной.

В современных телекоммуникационных системах информация передается с помощью электрического тока или напряжения, радиосигналов или световых сигналов - все эти физические процессы представляют собой колебания электромагнитного поля различной частоты.

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. Еще в недалеком прошлом такие линии связи были основными для передачи телефонных или телеграфных сигналов. Сегодня проводные линии связи быстро вытесняются кабельными. Но кое-где они все еще сохранились и при отсутствии других возможностей продолжают использоваться и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего.

Кабельные линии имеют достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической и, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных (и телекоммуникационных) сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов - неэкранированная витая пара (Unshielded Twisted Pair, UTP) и экранированная витая пара (Shielded Twisted Pair, STP), коаксиальные кабели с медной жилой, волоконно-оптические кабели. Первые два типа кабелей называют также медными кабелями.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое разнообразие типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны широковещательного радио (длинных, средних и коротких волн), называемые также АМ-диапазонами, или диапазонами амплитудной модуляции (Amplitude Modulation, AM), обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, использующие диапазоны очень высоких частот (Very High Frequency, VHF), для которых применяется частотная модуляция (Frequency Modulation, FM). Для передачи данных также используются диапазоны ультравысоких частот (Ultra High Frequency, UHF), называемые еще диапазонами микроволн (свыше 300 МГц). При частоте свыше 30 МГц сигналы уже не отражаются ионосферой Земли, и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, либо локальные или мобильные сети, где это условие выполняется.