Почему будущее за сетевыми технологиями. Сетевые технологии: тенденции и перспективы развития

Перспективы развития сетевых технологий

Сергей Пахомов

Пользователи ПК уже давно смирились с мыслью, что угнаться за темпами обновления комплектующих для ПК невозможно. Новый процессор последней модели перестает быть таковым уже через два-три месяца. Столь же стремительно обновляются и другие компоненты ПК: память, жесткие диски, материнские платы. И несмотря на заверения скептиков, которые утверждают, что для нормальной работы с ПК сегодня достаточно и процессора Celeron 400 МГц, множество компаний (во главе с Microsoft, конечно) неустанно трудятся над тем, чтобы найти достойное применение «лишним» гигагерцам. И надо отметить, что это у них неплохо получается.

а фоне возрастающей мощности ПК бурными темпами развиваются и сетевые технологии. Обычно развитие сетевых технологий и аппаратной части компьютеров традиционно рассматривается по отдельности, однако эти два процесса оказывают сильное влияние друг на друга. С одной стороны, увеличение мощности компьютерного парка в корне меняет контент приложений, что приводит к росту объемов информации, передаваемой по сетям. Быстрый рост IP-трафика и конвергенция сложных приложений для работы с голосом, данными и мультимедиа требуют постоянного наращивания пропускной способности сетей. При этом основой экономичных и высокопроизводительных сетевых решений остается технология Ethernet. С другой стороны, сетевые технологии не могут развиваться будучи не привязанными к возможностям компьютерного оборудования. Вот простой пример: для того чтобы реализовать потенциальные возможности гигабитного Ethernet, потребуется процессор Intel Pentium 4 с тактовой частотой не менее 2 ГГц. В противном случае компьютер или сервер будет просто не в состоянии переварить столь высокий трафик.

Влияние сетевых и компьютерных технологий друг на друга постепенно приводит к тому, что персональные компьютеры перестают быть только персональными, а начавшийся процесс конвергенции вычислительных и коммуникационных устройств мало-помалу избавляет персональный компьютер и от «компьютерности», то есть коммуникационные устройства наделяются вычислительными возможностями, что сближает их с компьютерами, а последние, в свою очередь, приобретают коммуникационные возможности. В результате такого сближения компьютеров и коммуникационных устройств постепенно начинает формироваться класс устройств следующего поколения, которые уже перерастут роль персональных компьютеров.

Впрочем, процесс конвергенции вычислительных и коммуникационных устройств еще только набирает обороты, и судить о его последствиях пока еще рано. Если же говорить о дне сегодняшнем, то стоит отметить, что после продолжительного застоя в развитии технологии для локальных сетей, который характеризовался господством Fast Ethernet, наблюдается процесс перехода не только на более высокоскоростные стандарты, но и на принципиально новые технологии сетевого взаимодействия.

Сейчас разработчикам на выбор предоставлены четыре возможности модернизации сетей:

Gigabit Ethernet для корпоративных пользователей;

Беспроводной Ethernet в офисе и дома;

Сетевые средства хранения данных;

10 Gigabit Ethernet в городских сетях.

Ethernet имеет несколько особенностей, которые обусловили повсеместное распространение этой технологии в IP-сетях:

Масштабируемая производительность;

Масштабируемость для применения в различных сетевых приложениях - от локальных сетей малого радиуса действия (до 100 м) до городских сетей (40 и более километров);

Низкая цена;

Гибкость и совместимость;

Простота использования и администрирования.

В совокупности эти особенности Ethernet позволяют применять данную технологию в четырех основных направлениях развития сетей:

Гигабитные скорости для корпоративного применения;

Беспроводные сети;

Системы сетевого хранения данных;

Ethernet в городских сетях.

В настоящее время Ethernet является наиболее широко используемой технологией создания локальных сетей во всем мире. По данным компании International Data Corporation (IDC 2000), более 85% всех локальных сетей построено на основе Ethernet. Современные технологии Ethernet далеко ушли от спецификаций, предложенных доктором Робертом Меткалфом и разработанных совместными усилиями компаний Digital, Intel и Xerox PARC в 1980 году.

Секрет успеха Ethernet легко объясним: за последние два десятилетия стандарты Ethernet постоянно совершенствовались, чтобы соответствовать все возрастающим требованиям к компьютерным сетям. Разработанная в начале 80-х годов технология Ethernet со скоростью передачи данных 10 Мбит/с эволюционировала сначала в версию со скоростью передачи данных 100 Мбит/с, а в наши дни - в современные стандарты Gigabit Ethernet и 10 Gigabit Ethernet.

Ввиду низкой стоимости решений на базе гигабитной технологии Ethernet и четко выраженного намерения поставщиков решений дать своим клиентам технологический запас на будущее, поддержка гигабитного Ethernet становится обязательной для корпоративных настольных ПК. IDC сообщает, что, по некоторым оценкам, к середине этого года более 50% поставляемых устройств для локальных сетей будут поддерживать Gigabit Ethernet.

Через год или два после того, как клиенты начнут переходить на Gigabit Ethernet, будет модернизирована и вся инфраструктура. Если следовать историческим тенденциям, то где-то в середине 2004 года наступит переломный момент в спросе на гигабитные коммутаторы. Широкомасштабное использование Gigabit Ethernet на настольных ПК, в свою очередь, приведет к необходимости применения 10 Gigabit Ethernet в серверах и магистралях корпоративных сетей. Использование 10 Gigabit Ethernet отвечает нескольким ключевым требованиям к высокоскоростным сетям, включая меньшую совокупную стоимость владения по сравнению с используемыми в настоящее время альтернативными технологиями, гибкость и совместимость с существующими сетями Ethernet. Благодаря всем этим факторам 10 Gigabit Ethernet становится оптимальным решением для городских сетей.

Изготовители оборудования и провайдеры услуг в ходе создания городских сетей могут столкнуться с некоторыми проблемами. Следует ли расширять имеющуюся инфраструктуру SONET/SDH или стоит сразу перейти на более экономичную инфраструктуру на базе Ethernet? В современных условиях, когда операторам сетей необходимо снизить затраты и обеспечить скорейший возврат инвестиций, сделать выбор как никогда сложно.

Совместимые с существующим оборудованием, эти гибкие, многофункциональные решения с различными скоростями передачи данных и отличным соотношением «цена/производительность» ускоряют внедрение решений на базе 10 Gigabit Ethernet в городских сетях.

Кроме начавшегося процесса перехода от технологии Fast Ethernet к Gigabit Ethernet, 2003 год ознаменовался массовым внедрением беспроводных технологий. За последние несколько лет преимущества беспроводных сетей стали очевидными для большого круга людей, а сами устройства беспроводного доступа теперь представлены в большем количестве и по более низкой цене. По этим причинам беспроводные сети стали идеальным решением для мобильных пользователей, а также выступили в качестве инфраструктуры мгновенного доступа для широкого круга корпоративных клиентов.

Высокоскоростной стандарт передачи данных IEEE 802.11b был принят почти всеми производителями оборудования для беспроводных сетей со скоростью передачи данных до 11 Мбит/с. Сначала он был предложен как альтернативный вариант для построения корпоративных и домашних сетей. Эволюция беспроводных сетей продолжилась с появлением стандарта IEEE 802.11g, принятого в начале нынешнего года. Этот стандарт обещает значительный рост скорости передачи данных - до 54 Мбит/с. Его задача - обеспечить корпоративным пользователям возможность работы с требовательными к полосе пропускания приложениями, не жертвуя при этом объемом передаваемых данных, но улучшая масштабируемость, помехоустойчивость и безопасность данных.

Безопасность продолжает оставаться очень важным вопросом, поскольку мобильные пользователи, количество которых постоянно растет, требуют возможности безопасного беспроводного доступа к своим данных в любом месте и в любое время. Недавние исследования показали уязвимость шифрования по протоколу Wired Equivalent Privacy (WEP), что делает защиту WEP недостаточной. Создание надежной и масштабируемой системы безопасности возможно с помощью технологий виртуальных частных сетей (VPN), поскольку они обеспечивают инкапсуляцию, аутентификацию и полное шифрование данных в беспроводной сети.

Быстрый рост популярности электронной почты и электронной коммерции cтал причиной резкого увеличения потока данных, передаваемых по общедоступной сети Интернет и по корпоративным IP-сетям. Увеличение трафика данных способствовало переходу от традиционной серверной модели хранения данных (Direct Attached Storage, DAS) к инфраструктуре самой сети, в результате чего появились сети хранения данных (SAN) и сетевые устройства хранения данных (NAS).

В технологиях хранения данных происходят важные изменения, ставшие возможными благодаря появлению сопутствующих сетевых технологий и технологий ввода-вывода. Эти тенденции включают:

Переход к технологиям Ethernet и iSCSI для решений хранения данных на базе IP;

Внедрение архитектуры InfiniBand для кластерных систем;

Разработку новой архитектуры последовательной шины PCI-Express для универсальных устройств ввода-вывода, поддерживающей скорость до 10 Гбит/с и выше.

Новая технология на базе Ethernet под названием iSCSI (Internet SCSI) является высокоскоростным, недорогим и функционирующим на больших дистанциях решением хранения данных для Web-сайтов, провайдеров услуг, коммерческих фирм и других организаций. По этой технологии традиционные команды SCSI и передаваемые данные инкапсулируются в пакеты TCP/IP. Стандарт iSCSI позволяет создавать недорогие сети хранения данных на базе IP, обладающие отличной совместимостью.

Интернет вещей (от англ. Internet of Things или сокращ. IoT) представляет собой систему окружающих вас устройств, подключенных к друг другу и к сети Интернет. На сегодняшний момент эта отрасль стремительно развивается революционными скачками. Такой технический прогресс в эволюции человечества сравним разве что с изобретением парового двигателя или последующей индустриализацией электричества. К этому дню цифровая трансформация полностью видоизменяет самые различные отрасли в экономической области и трансформирует наше привычное окружение. При этом, как очень часто бывает в таких случаях, будучи в начале пути, окончательный эффект всех превращений трудно спрогнозировать.

Процесс, который уже запущен, скорее всего, не может быть равномерным и на данном этапе некоторые рыночные отрасли, оказываются, в большей степени готовы к изменениям, чем некоторые другие. К первым отраслям следует отнести потребительскую электронику, транспортные средства, логистику, финансовый и банковский сектор; ко вторым можно отнести сельское хозяйство и.т.п. Хотя стоит отметить, что и в этом направлении разработаны успешные пилотные проекты, которые впоследствии обещают принести довольно значимые результаты.

Проект под названием TracoVino, является одной из первых попыток внедрить интернет вещей в знаменитой долине Мозеля, которая к тому же носит звание старейшего винодельческого региона в современной Германии. В основе решения заложена облачная платформа, которая будет автоматизировать все процессы в винограднике, начиная от выращивания продукта до его окончательно бутилирования. Информация, необходимая для принятия решений, будет поступать в электронную систему от нескольких типов датчиков. Кроме определения температуры, влажности почвы и наблюдения за окружающей средой, датчики смогут определять количество полученной солнечной радиации, кислотность земли и содержание в ней различных биогенных веществ. Что это может дать в конце? А то, что компания не только позволит виноделам получать общую картину о состоянии их виноградника, но и анализировать его некоторые области. В конечном счёте, это предоставит возможность людям заблаговременно выявлять проблемы, получать полезную информацию о возможном заражении и даже получить прогноз о возможном качестве и общем количестве вина. Виноделы смогут заключать с бизнес партнёрами форвардные контракты.

Какие ещё области можно подсоединить к такой инновации?

К наиболее развитым сценариям использования IoT, нужно конечно отнести «умные города». Согласно изученным данным, которые были получены от различных компаний, таких как Beecham Research, Pike Research, iSupply Telematics, а также министерства транспорта США, на сегодняшний момент в рамках реализации данных проектов по всему миру насчитывается порядка миллиарда технических устройств, которые отвечают за те или иные функции в системах снабжения водой, управления городским транспортом, общественным здравоохранением и безопасностью. Сюда следует отнести умные парковки, которые оптимизируют использование стояночных мест, интеллектуальные системы водоснабжения, которые мониторят качество потребляемой жителями города воды, умные автотранспортные остановки, которые позволяют получить детальные сведения о времени ожидания нужного транспорта и многое другое.

В промышленной сфере уже работают сотни миллионов устройств, которые готовы к подключению. Среди таких систем можно выделить системы умного технического обслуживания и ремонта, логистического учёта и безопасности, интеллектуальные насосы, компрессоры и клапаны. Огромное количество разнообразных устройств уже давно задействовано в энергетической сфере и системе ЖКХ - это многочисленные счётчики, элементы автоматики распределительных сетей, оборудование для потребительских нужд, электрозарядная инфраструктура, а также техническое обеспечение для возобновляемых и распределяемых источников питания. В медицинской области к интернету вещей на данный момент подключаются и будут у будущем подключены диагностические средства, мобильные лаборатории, имплантаты различных направлений, технические устройства для расширения телемедицины.

Перспективы количества подключенных устройств к интернету в будущем

По различным наблюдениям в ближайшем будущем количество технических подключений будет соразмерно увеличиваться и составит рост в 25% каждый год. А вообще к 2021 году в мире будет насчитываться порядка 28 миллиардов подключённых гаджетов и устройств. Из всей этой суммы всего лишь 13 миллиардов будет приходиться на привычные потребительские девайсы, такие как телефоны, планшеты, ноутбуки и компьютеры. А остальные 15 миллиардов устройств будут представлены пользовательскими и промышленными устройствами. Сюда можно отнести различные датчики, терминалы для продаж, автомашины, табло и т.п.

Несмотря на то, что приведённые выше данные из ближайшего будущего поражают умственное воображение, всё же и они не являются окончательной цифрой. Интернет вещей будет внедряться с каждым разом всё активнее и активнее, и чем дальше, тем больше устройств (простых или сложных) придётся подключить. По мере того, как развиваются человеческие технологии, а особенно под влиянием запуска инновационных сетей 5G после 2020 года, общий прирост подключённой техники будет шагать стремительными темпами и очень быстро достигнет цифры в 50 млрд.


Массовый характер подключений к сети, а также многочисленные сценарии использования, диктуют новые требования к технологии IoT по самому широкому диапазону. Скорость передачи информации, всякого рода задержки, а также надёжность (гарантированность) передачи данных определяются особенностями конкретного применения. Но, несмотря на это есть ряд общих целевых показателей, которые заставляют нас отдельно смотреть на сетевые технологии для IoT и их отличия от привычных всем сетей телефонной связи.

Наипервейшей задачей является стоимость реализации сетевой технологии. Ведь в конечном устройстве она должна быть существенно меньше существующих на сегодняшний момент модулей GSM/WCDMA/LTE, которые используются при производстве телефонов и модемов. Одна из причин, которая сдерживает массовое внедрение подключённых устройств - это слишком высокая финансовая составляющая самого чипсета, реализующего полный стек сетевых технологий, куда включена передача голоса и многие иные функции, которые не являются столь необходимыми в большинстве доступных сценариев.

Главные требования к новым системам

Связанное с этим вопросом, но формулируемое отдельным требование - это низкие затраты на энергоресурсы и как можно более длительное время автономной работы. Большое количество сценариев в области применения интернета вещей предусматривают автономную работу подключённых устройств от встроенных в них элементов питания. Упрощение сетевых модулей и энергоэффективная модель позволят достичь автономной работы, которая будет рассчитана до 10 лет, при обшей ёмкости элемента питания в 5 Вт*ч. Таких цифр, в частности, можно будет достичь благодаря уменьшению объёма передаваемой информации при использовании длительных периодов «молчания», в течение которых, гаджет не будет получать и не передавать сведения. Таким образом он практически будет потреблять малое количество электроэнергии. Правда стоит отметить, что реализация конкретных механизмов, конечно, отличается в зависимости от того, к какой технологии его будут применять.

Покрытие сети - это ещё одна характеристика, которую следует досконально изучить и рассмотреть. На сегодняшний момент покрытие мобильной сети в достаточном объёме передаёт устойчивую передачу данных в населённые пункты, в том числе и внутрь зданий. Но в то же время, подключённые устройства могут быть и там, где массового скопления людей большую часть времени попросту нет. Сюда можно отнести отдалённые труднодоступные районы, огромные железнодорожные перегоны, поверхность обширных морей и океанов, земляные подвалы, изолированные бетонные и металлические короба, шахты лифта, железные контейнеры и т.д. Целевым ориентиром разрешения этой проблемы, по мнению большинства людей задействованных на IoT рынке, является улучшение бюджета линии на 20 dB по отношению к традиционным сетям GSM, которые пока являются лидерами по покрытию среди мобильных технологий на сегодня.


Для интернета вещей выдвигаются повышенные требования к стандартам связи

Различные сценарии применения интернета вещей в различных сферах деятельности предполагают совершенно разноплановые требования к связи. И здесь вопрос стоит не только в возможностях быстрого масштабирования сети в плане числа требующих подключения устройств. Например, видно, что в вышеупомянутом примере «умного виноградника» применяется большое количество достаточно несложных датчиков, а ведь на промышленных предприятиях уже будут подключены довольно сложные агрегаты, которые выполняют самостоятельные действия, а не просто фиксируют определённые сведения, возникающие в окружающей среде. Также можно упомянуть и медицинскую область применения, в частности техническое оборудование для телемедицины. Применение данных комплексов, работой которых является проведение дистанционной диагностики, мониторинг за сложными врачебными манипуляциями и удалённым обучением с использованием видеоконтента как связи в режиме реального времени, несомненно, в будущем будет предъявлять всё более и более новые требования в плане обрывов сигнала, передачи сведений, а также надёжности и безопасности связи.

Технологии интернета вещей обязаны быть предельно гибкими, дабы обеспечивать многообразный набор сетевых характеристик в зависимости от сферы применения, приоритезации десятков и сотен различных видов сетевого трафика и правильное распределение ресурсов сети для обеспечения экономической эффективности. Огромное количество подключённой техники, десятки различных сценариев применения, гибкое управление и контроль - вот, всё то, что обязано быть реализовано в рамках общей сети.


Текущему решению поставленных задач уже посвящены долгие наработки и разработанные сценарии последних лет в сфере беспроводной передачи информации. Это связанно как со стремлением внедрить уже имеющиеся сетевые архитектуры и протоколы, так и для создания инновационных системных решений буквально с самого начала. С одной стороны очень чётко прослеживаются так называемые «капиллярные решения», которые сравнительно неплохо решают задачи IoT коммуникаций в рамках одного здания или территории с ограниченным потенциалом. К этим решениям можно отнести такие популярные сегодня сети как Wi-Fi, Bluetooth, Z-Wave, Zigbee и их иные цифровые аналоги.

С другой стороны - нынешние мобильные технологии, которые со всей очевидностью располагаются вне конкуренции с точки зрения обеспечения сетевого покрытия и масштабируемости хорошо управляемой инфраструктуры. Как говорится в исследовательском докладе Ericsson Mobility Report, общее покрытие GSM сети составляет на сегодня порядка 90% заселённой территории планеты, сети WCDMA и LTE покрывают 65% и 40% непосредственно при активном строительстве новых сетей. Шаги, предпринятые в рамках развития стандартов мобильной связи, в частности спецификации 3GPP Release 13 направлены как раз на достижение целевых для IoT показателей при сохранении преимуществ использования глобальной экосистемы. Усовершенствование данных технологий в будущем, станет прочным фундаментом грядущих модификаций стандартов мобильной связи, куда помимо прочего и входят стандарты сетей пятого поколения (5G).

Альтернативные разработки низкой мощности для нелицензируемого частотного спектра, в большинстве своём, направлены на более специализированное применение. К тому же необходимость разработки новой инфраструктуры и закрытость технологий прямо влияют на распространение подобных мировых сетей.




Предисловие Революционизирующее влияние Интернета на мир компьютеров и коммуникаций не имеет исторических аналогов. Изобретение телеграфа, телефона, радио и компьютера подготовило почву для происходящей ныне беспрецедентной интеграции. Интернет одновременно является и средством общемирового вещания, и механизмом распространения информации, и средой для сотрудничества и общения людей, охватывающей весь земной шар. Интернет - мировая компьютерная сеть. Она составлена из разнообразных компьютерных сетей, объединенных стандартными соглашениями о способах обмена информацией и единой системой адресации. Интернет использует протоколы семейства TCP/IP. Они хороши тем, что обеспечивают относительно дешевую возможность надежно и быстро передавать информацию даже по не слишком надежным линиям связи, а также строить программное обеспечение, пригодное для работы на любой аппаратуре. Система адресации (URL-адреса) обеспечивает уникальными координатами каждый компьютер (точнее, практически каждый ресурс компьютера) и каждого пользователя Интернета, создавая возможность взять именно то, что нужно, и передать именно туда, куда нужно.


Историческая справка Около 40 лет назад Министерство Обороны США создало сеть, которая явилась предтечей Internet, – она называлась ARPAnet. ARPAnet была экспериментальной сетью, – она создавалась для поддержки научных исследований в военно-промышленной сфере, – в частности, для исследования методов построения сетей, устойчивых к частичным повреждениям, получаемым, например, при бомбардировке авиацией и способных в таких условиях продолжать нормальное функционирование. Это требование дает ключ к пониманию принципов построения и структуры Internet. В модели ARPAnet всегда была связь между компьютером-источником и компьютером-приемником (станцией назначения). Сеть предполагалась ненадежной: любая часть сети может исчезнуть в любой момент. На связывающиеся компьютеры – не только на саму сеть – также возложена ответственность обеспечивать налаживание и поддержание связи. Основной принцип состоял в том, что любой компьютер мог связаться как равный с равным с любым другим компьютером.


Передача данных в сети была организована на основе протокола Internet – IP. Протокол IP – это правила и описание работы сети. Этот свод включает правила налаживания и поддержания связи в сети, правила обращения с IP-пакетами и их обработки, описания сетевых пакетов семейства IP (их структура и т.п.). Сеть задумывалась и проектировалась так, чтобы от пользователей не требовалось никакой информации о конкретной структуре сети. Для того, чтобы послать сообщение по сети, компьютер должен поместить данные в некий "конверт"", называемый, например, IP, указать на этом "конверте"" конкретный адрес в сети и передать получившиеся в результате этих процедур пакеты в сеть. Эти решения могут показаться странными, как и предположение о "ненадежной"" сети, но уже имеющийся опыт показал, что большинство этих решений вполне разумно и верно. Пока Международная Организация по Стандартизации (Organization for International Standardization – ISO) тратила годы, создавая окончательный стандарт для компьютерных сетей, пользователи ждать не желали. Активисты Internet начали устанавливать IP- программное обеспечение на все возможные типы компьютеров. Вскоре это стало единственным приемлемым способом для связи разнородных компьютеров. Такая схема понравилась правительству и университетам, которые проводят политику покупки компьютеров у различных производителей. Каждый покупал тот компьютер, который ему нравился и вправе был ожидать, что сможет работать по сети совместно с другими компьютерами.


Примерно 10 лет спустя после появления ARPAnet появились Локальные Вычислительные Сети (LAN), например, такие как Ethernet и др. Одновременно появились компьютеры, которые стали называть рабочими станциями. На большинстве рабочих станций была установлена операционная система UNIX. Эта ОС имела возможность работы в сети с протоколом Internet (IP). В связи с возникновением принципиально новых задач и методов их решения появилась новая потребность: организации желали подключиться к ARPAnet своей локальной сетью. Примерно в то же время появились другие организации, которые начали создавать свои собственные сети, использующие близкие к IP коммуникационные протоколы. Стало ясно, что все только выиграли бы, если бы эти сети могли общаться все вместе, ведь тогда пользователи из одной сети смогли бы связываться с пользователями другой сети. Одной из важнейших среди этих новых сетей была NSFNET, разработанная по инициативе Национального Научного Фонда (National Science Foundation – NSF). В конце 80-х NSF создал пять суперкомпьютерных центров, сделав их доступными для использования в любых научных учреждениях. Было создано всего лишь пять центров потому, что они очень дороги даже для богатой Америки. Именно поэтому их и следовало использовать кооперативно. Возникла проблема связи: требовался способ соединить эти центры и предоставить доступ к ним различным пользователям. Сначала была сделана попытка использовать коммуникации ARPAnet, но это решение потерпело крах, столкнувшись с бюрократией оборонной отрасли и проблемой обеспечения персоналом.


Тогда NSF решил построить свою собственную сеть, основанную на IP технологии ARPAnet. Центры были соединены специальными телефонными линиями с пропускной способностью 56 KBPS (7 KB/s). Однако, было очевидно, что не стоит даже и пытаться соединить все университеты и исследовательские организации непосредственно с центрами, т.к. проложить такое количество кабеля – не только очень дорого, но практически невозможно. Поэтому решено было создавать сети по региональному принципу. В каждой части страны заинтересованные учреждения должны были соединиться со своими ближайшими соседями. Получившиеся цепочки подсоединялись к суперкомпьютеру в одной из своих точек, таким образом суперкомпьютерные центры были соединены вместе. В такой топологии любой компьютер мог связаться с любым другим, передавая сообщения через соседей. Это решение было успешным, но настала пора, когда сеть уже более не справлялась с возросшими потребностями. Совместное использование суперкомпьютеров позволяло подключенным общинам использовать и множество других вещей, не относящихся к суперкомпьютерам. Неожиданно университеты, школы и другие организации осознали, что заимели под рукой море данных и мир пользователей. Поток сообщений в сети (трафик) нарастал все быстрее и быстрее пока, в конце концов, не перегрузил управляющие сетью компьютеры и связывающие их телефонные линии. В 1987 г. контракт на управление и развитие сети был передан компании Merit Network Inc., которая занималась образовательной сетью Мичигана совместно с IBM и MCI. Старая физически сеть была заменена более быстрыми (примерно в 20 раз) телефонными линиями. Были заменены на более быстрые и сетевые управляющие машины. Процесс совершенствования сети идет непрерывно. Однако, большинство этих перестроек происходит незаметно для пользователей. Включив компьютер, вы не увидите объявления о том, что ближайшие полгода Internet не будет доступна из-за модернизации. Возможно, даже более важно то, что перегрузка сети и ее усовершенствование создали зрелую и практичную технологию. Проблемы были решены, а идеи развития проверены в деле.


Способы доступа к Internet Использование только электронной почты. Этот способ позволяет получать и отправлять сообщения другим пользователям и только. Через специальные шлюзы Вы можете также использовать и другие сервисы, предоставляемые Internet. Эти шлюзы, однако, не позволяют работать в интерактивном режиме, и могут быть довольно сложными в использовании. Режим удаленного терминала. Вы подключаетесь к другому компьютеру, соединенному с Internet, как удаленный пользователь. На удаленном компьютере запускаются программы-клиенты, которые используют Internet-сервисы, а результаты их работы отображаются на экране Вашего терминала. Поскольку для подключения используются, в основном, программы эмуляции терминала, вы можете работать только в текстовом режиме. Таким образом, например, для просмотра WEB-узлов Вы сможете использовать только текстовый браузер и графических изображений не увидите. Непосредственное соединение. Это основная и наилучшая форма соединения, когда Ваш компьютер становится одним из узлов Internet. Посредством протокола TCP/IP он напрямую общается с другими компьютерами в Internet. Доступ к сервисам Internet осуществляется посредством программ, работающих на Вашем компьютере.


Традиционно, компьютеры подключались напрямую в Internet через локальные сети или по выделенным соединениям. Кроме собственно компьютера, для установления таких соединений необходимо дополнительное сетевое оборудование (маршрутизаторы, шлюзы и т.п.). Поскольку это оборудование и каналы соединения достаточно дорогие, прямые соединения используются только организациями с большим объемом передаваемой и принимаемой информации. Альтернативой прямого соединения для индивидуальных пользователей и небольших организаций является использование телефонных линий для установления временных соединений (dial up) к удаленному компьютеру, соединенному с Internet. Что такое SLIP/PPP? Доменная система имен система имен


Что такое SLIP/PPP? Обсуждая различные способы доступа к Internet, мы утверждали, что непосредственное соединение является основным и наилучшим. Однако для индивидуального пользователя оно является слишком дорогим. Работа же в режиме удаленного терминала существенно ограничивает возможности пользователя. Компромиссным решением является использование протоколов SLIP (Serial Line Internet Protocol) или PPP (Point to Point Protocol). Далее термин SLIP/PPP будет употребляться для обозначения SLIP и/или PPP – во многих аспектах они схожи. SLIP/PPP обеспечивает передачу пакетов TCP/IP по последовательным каналам, в частности, телефонным линиям, между двумя компьютерами. На обоих компьютерах работают программы, использующие протоколы TCP/IP. Таким образом, индивидуальные пользователи получают возможность устанавливать прямое соединение с Internet со своего компьютера, имея всего лишь модем и телефонную линию. Подключаясь посредством SLIP/PPP, Вы можете запускать программы-клиенты WWW, электронной почты и т.п. непосредственно на своем компьютере.


SLIP/PPP действительно способ прямого соединения с Internet, поскольку: Ваш компьютер подсоединен к Internet. Ваш компьютер использует сетевое программное обеспечение для общения с другими компьютерами по протоколу TCP/IP. Ваш компьютер имеет уникальный IP-адрес. В чем же различие между SLIP/PPP-соединением и режимом удаленного терминала? Для установления как SLIP/PPP-соединения, так и режима удаленного терминала необходимо дозвониться к другому компьютеру, непосредственно соединенному с Internet (провайдеру) и зарегистрироваться на нем. Ключевое отличие состоит в том, что при SLIP/PPP-соединении Ваш компьютер получает уникальный IP-адрес и напрямую общается с другими компьютерами по протоколу TCP/IP. В режиме же удаленного терминала ваш компьютер является всего лишь устройством отображения результатов работы программы, запущенной на компьютере провайдера.


Доменная система имен Сетевое программное обеспечение нуждается 32-битных IP- адресах для установления соединения. Однако пользователи предпочитают использовать имена компьютеров, поскольку их легче запоминать. Таким образом, необходимы средства для преобразования имен в IP-адреса и наоборот. Когда Internet была небольшой, это было просто. На каждом компьютере были файлы, в которых описывались соответствия между именами и адресами. Периодически в эти файлы вносились изменения. В настоящее время такой способ изжил себя, поскольку количество компьютеров в Internet очень велико. Файлы были заменены системой серверов имен (name servers), которые отслеживают соответствия между именами и сетевыми адресами компьютеров (в действительности это только один из видов сервиса, предоставляемых системой серверов имен). Необходимо отметить, что используется целая сеть серверов имен, а не какой то один, центральный. Сервера имен организованы в виде дерева, соответствующего организационной структуре сети. Имена компьютеров также составляют соответствующую структуру. Пример: компьютер имеет имя BORAX.LCS.MIT.EDU. Это компьютер, установленный в компьютерной лаборатории (LCS) в Массачусетском технологическом институте (MIT).


Для того. Чтобы определить его сетевой адрес, теоретически, необходимо получить информацию от 4 различных серверов. Во- первых, необходимо связаться с одним из серверов EDU, которые обслуживают учреждения образования (для обеспечения надежности каждый уровень иерархии имен обслуживают несколько серверов). На этом сервере необходимо получить адреса серверов MIT. На одном из серверов MIT можно получить адрес сервера (серверов) LCS. В заключение, на сервере LCS можно узнать адрес компьютера BORAX. Каждый из этих уровней называется доменом. Полное имя BORAX.LCS.MIT.EDU, таким образом, представляет собой доменное имя (так же как и имена доменов LCS.MIT.EDU, MIT.EDU, and EDU). К счастью, в действительности нет необходимости каждый раз связываться со всеми перечисленными серверами. Программное обеспечение, установленное у пользователя, связывается с сервером имен в своем домене, а он при необходимости связывается с другими серверами имен и предоставляет в ответ конечный результат преобразования доменного имени в IP-адрес. Доменная система хранит не только информацию об именах и адресах компьютеров. В ней также хранится большое количество другой полезной информации: сведения о пользователях, адреса почтовых серверов и т.п.


Сетевые протоколы Протоколы прикладного уровня используются в конкретных прикладных программах. Общее их количество велико и продолжает постоянно увеличиваться. Некоторые приложения существуют с самого начала развития internet, например, TELNET и FTP. Другие появились позже: HTTP, NNTP, POP3, SMTP. Протокол TELNET Протокол HTTP NNTP POP3 Протокол FTP Протокол SMTP


Протокол TELNET позволяет серверу рассматривать все удаленные компьютеры как стандартные «сетевые терминалы» текстового типа. Работа с TELNET походит на набор телефонного номера. Пользователь набирает на клавиатуре что-то вроде telnet delta и получает на экране приглашение на вход в машину delta. Протокол TELNET существует уже давно. Он хорошо опробован и широко распространен. Создано множество реализаций для самых разных операционных систем.


Протокол FTP (File Transfer Protocol – протокол передачи файлов) распространен также широко как TELNET. Он является одним из старейших протоколов семейства TCP/IP. Также как TELNET он пользуется транспортными услугами TCP. Существует множество реализаций для различных операционных систем, которые хорошо взаимодействуют между собой. Пользователь FTP может вызывать несколько команд, которые позволяют ему посмотреть каталог удаленной машины, перейти из одного каталога в другой, а также скопировать один или несколько файлов.


Протокол SMTP (Simple Mail Transfer Protocol – простой протокол передачи почты) поддерживает передачу сообщений (электронной почты) между произвольными узлами сети internet. Имея механизмы промежуточного хранения почты и механизмы повышения надежности доставки, протокол SMTP допускает использование различных транспортных служб. Протокол SMTP обеспечивает как группирование сообщений в адрес одного получателя, так и размножение нескольких копий сообщения для передачи в разные адреса. Над модулем SMTP располагается почтовая служба конкретного компьютера. В типичных программах-клиентах в основном применяется для отправки исходящих сообщений.


Протокол HTTP (Hyper text transfer protocol – протокол передачи гипертекста) применяется для обмена информацией между серверами WWW (World Wide Web – всемирная паутина) и программами просмотра гипертекстовых страниц – браузерами WWW. Допускает передачу широкого спектра разнообразной информации – текстовой, графической, аудио и видео. В настоящее время находится в стадии непрерывного совершенствования.


POP3 (Post Office Protocol – протокол почтового узла, 3 версия), позволяет программам-клиентам электронной почты принимать и передавать сообщения с/на почтовые серверы. Обладает достаточно гибкими возможностями по управлению содержимым почтовых ящиков, расположенных на почтовом узле. В типичных программах- клиентах в основном применяется для приема входящих сообщений.


Network News Transfer Protocol – протокол передачи сетевых новостей (NNTP) позволяет общаться серверам новостей и клиентским программам – распространять, запрашивать, извлекать и передавать сообщения в группы новостей. Новые сообщения хранятся в централизованной базе данных, которая позволяет пользователю выбирать интересующие его сообщения. Также обеспечивается индексирование, организация ссылок и удаление устаревших сообщений.


Сервисы Internet Серверами называются узлы сети, предназначенные для обслуживания запросов клиентов – программных агентов, извлекающих информацию или предающих ее в сеть и работающих под непосредственным управлением пользователей. Клиенты предоставляют информацию в понятном и удобном для пользователей виде, в то время как серверы выполняют служебные функции по хранению, распространению, управлению информацией и выдачу ее по запросу клиентов. Каждый вид сервиса в Internet предоставляется соответствующими серверами и может использоваться с помощью соответствующих клиентов. WWW Proxy-сервер FTPTelnet NEWS/USENET


Сервис WWW – всемирная паутина, обеспечивает представление и взаимосвязи огромного количества гипертекстовых документов, включающих текст, графику, звук и видео, расположенных на различных серверах по всему миру и связанных между собой посредством ссылок в документах. Появление этого сервиса значительно упростило доступ к информации и стало одной из основных причин взрывообразного роста Internet с 1990 года. Сервис WWW функционирует с использованием протокола HTTP. Для использования этого сервиса применяются программы- браузеры, наиболее популярными из которых в настоящий момент являются Netscape Navigator и Internet Explorer. «Web browsers» – не что иное, как средства просмотра; они выполнены по аналогии с бесплатной коммуникационной программой под названием Mosaic, созданной в 1993 г. в лаборатории Национального центра суперкомпьютеров (National Center for Supercomputing Applications) при Университете шт. Иллинойс для облегчения доступа к WWW. Что же можно получить с помощью WWW? Почти все, что ассоциируется с понятием «работа в системе Internet», – от самых последних финансовых новостей до информации о медицине и здравоохранении, музыке и литературе, домашних животных и комнатных растениях, кулинарии и автомобильном деле.


Можно заказывать авиабилеты в любую часть мира (реальные, а не виртуальные), туристические проспекты, находить необходимое программное и техническое обеспечение для своего ПК, играть в игры с далекими (и неизвестными) партнерами и следить за спортивными и политическими событиями в мире. Наконец, с помощью большинства программ со средствами доступа к WWW можно получить доступ и к телеконференциям (всего их около), куда помещаются сообщения на любые темы – от астрологии до языкознания, а также обмениваться сообщениями по электронной почте. Благодаря средствам просмотра WWW хаотические джунгли информации в Internet приобретают форму привычных аккуратно оформленных страниц с текстом и фотографиями, а в некоторых случаях даже с видеосюжетами и звуком. Привлекательные титульные страницы (home pages) сразу же помогают понять, какая информация последует дальше. Здесь есть все необходимые заголовки и подзаголовки, выбирать которые можно с помощью линеек прокрутки как на обычном экране Windows или Macintosh. Каждое ключевое слово соединяется с соответствующими информационными файлами посредством гипертекстовых связей. И пусть термин «гипертекст» вас не пугает: гипертекстовые связи – это примерно то же самое, что сноска в статье энциклопедии, начинающаяся со слов «смотри также...» Вместо того, чтобы листать страницы книги, Вам достаточно щелкнуть мышью на нужном ключевом слове (для удобства оно выделяется на экране цветом или шрифтом), и перед вами появится требуемый материал. Очень удобно, что программа позволяет возвращаться к ранее просмотренным материалам или, щелкнув мышью, двигаться дальше.


– электронная почта. С помощью можно обмениваться личными или деловыми сообщениями между адресатами, имеющими адрес. Ваш электронный адрес указывается в контракте на подключение Сервер электронной почты, на котором для вас заводится почтовый ящик, работает наподобие обыкновенного почтового отделения, на которое приходит ваша почта. Ваш электронный почтовый адрес – это аналог арендованного абонентского ящика в почтовом отделении. Посланные вами сообщения сразу направляются адресату, указанному в письме, а пришедшие вам сообщения ожидают в вашем абонентском ящике, пока вы их не заберете. Вы можете посылать и принимать электронную почту от любого лица, имеющего электронный адрес. Для передачи сообщений в основном используется протокол SMTP, а для приема – POP3. Вы можете использовать разнообразные программы для работы с – специализированные, например Eudora, или же встроенные в Web браузер, например Netscape Navigator.


Usenet – это всемирный дискуссионный клуб. Он состоит из набора конференций («newsgroups»), имена которых организованы иерархически в соответствии с обсуждаемыми темами. Сообщения («articles» или «messages») посылаются в эти конференции пользователями посредством специального программного обеспечения. После посылки сообщения рассылаются на серверы новостей и становятся доступными для прочтения другими пользователями. Можно послать сообщение и просмотреть отклики на него, которые появятся в дальнейшем. Так как один и тот же материал читает множество людей, то отзывы начинают накапливаться. Все сообщения по одной тематике образуют поток («thread») (в русском языке в этом же значении используется и слово «тема»); таким образом, хотя отклики могли быть написаны в разное время и перемешаться с другими сообщениями, они все равно формируют целостное обсуждение. Вы можете подписаться на любую конференцию, просматривать заголовки сообщений в ней с помощью программы чтения новостей, сортировать сообщения по темам, чтобы было удобнее следить за обсуждением, добавлять свои сообщения с комментариями и задавать вопросы. Для прочтения и отправки сообщений используются программы чтения новостей, например встроенная в браузер Netscape Navigator – Netscape News или Internet News от Microsoft, поставляемая вместе с последними версиями Internet Explorer.


FTP – это метод пересылки файлов между компьютерами. Продолжающиеся разработка программного обеспечения и публикация уникальных текстовых источников информации гарантируют: мировые архивы FTP останутся зачаровывающей и постоянно меняющейся сокровищницей. Вы вряд ли найдете в FTP-архивах коммерческие программы, так как лицензионные соглашения запрещают их открытое распространение. Зато обнаружите условно-бесплатное и общедоступное программное обеспечение. Это разные категории: общедоступные программы (public domain) действительно бесплатны, а за условно-бесплатное программное обеспечение (shareware) требуется заплатить автору, если после испытательного срока Вы решите оставить себе программу и пользоваться ею. Встретятся вам и так называемые бесплатные программы (freeware); их создатели сохраняют за собой авторские права, но разрешают пользоваться своими творениями без какой-либо оплаты. Для просмотра FTP-архивов и получения хранящихся на них файлов вы можете воспользоваться специализированными программами – WS_FTP, CuteFTP, или же использовать браузеры WWW Netscape Navigator и Internet Explorer – в них содержатся встроенные средства работы с FTP-серверами.


Remote Login – удаленный доступ – работа на удаленном компьютере в режиме, когда ваш компьютер эмулирует терминал удаленного компьютера, т.е. вы можете делать все то же (или почти все), что можно делать с обычного терминала машины, с которой вы установили сеанс удаленного доступа. Программа, которая обслуживает удаленные сеансы, называется telnet. Telnet имеет набор команд, которые управляют сеансом связи и его параметрами. Сеанс обеспечивается совместной работой программного обеспечения удаленного компьютера и вашего. Они устанавливают TCP-связь и общаются через TCP и UDP пакеты. Программа telnet входит в поставку Windows и устанавливается вместе с поддержкой протокола TCP/IP.


Proxy («ближний») сервер предназначен для накопления информации, к которой часто обращаются пользователи, на локальной системе. При подключении к Internet с использованием proxy-сервера ваши запросы первоначально направляются на эту локальную систему. Сервер извлекает требуемые ресурсы и предоставляет их вам, одновременно сохраняя копию. При повторном обращении к тому же ресурсу предоставляется сохраненная копия. Таким образом, уменьшается количество удаленных соединений. Использование proxy-сервера может несколько увеличить скорость доступа если канал связи вашего провайдера Internet недостаточно производителен. Если же канал связи достаточно мощный, скорость доступа может даже несколько снизиться, поскольку при извлечении ресурса вместо одного соединения от пользователя к удаленному компьютеру производится два: от пользователя к proxy-серверу и от proxy-сервера к удаленному компьютеру.
Термин TCP/IP обычно обозначает все, что связано с протоколами TCP и IP. Он охватывает целое семейство протоколов, прикладные программы и даже саму сеть. В состав семейства входят протоколы UDP, ARP, ICMP, TELNET, FTP и многие другие. TCP/IP – это технология межсетевого взаимодействия. Модуль IP создает единую логическую сеть. Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный протокол передачи. Таким образом, две машины, подключенные к одной подсети, могут обмениваться пакетами. Когда необходимо передать пакет между машинами, подключенными к разным подсетям, то машина-отправитель посылает пакет в соответствующий шлюз (шлюз подключен к подсети также как обычный узел). Оттуда пакет направляется по определенному маршруту через систему шлюзов и подсетей, пока не достигнет шлюза, подключенного к той же подсети, что и машина-получатель; там пакет направляется к получателю. Проблема доставки пакетов в такой системе решается путем реализации во всех узлах и шлюзах межсетевого протокола IP. Межсетевой уровень является по существу базовым элементом во всей архитектуре протоколов, обеспечивая возможность стандартизации протоколов верхних уровней.


Логическая структура сетевого программного обеспечения, реализующего протоколы семейства TCP/IP в каждом узле сети internet, изображена на Рис. 1. Прямоугольники обозначают обработку данных, а линии, соединяющие прямоугольники, – пути передачи данных. Горизонтальная линия внизу рисунка обозначает кабель сети Ethernet, которая используется в качестве примера физической среды. Понимание этой логической структуры является основой для понимания всей технологии internet. Рис. 1 Структура протокольных модулей в узле сети TCP/IP


Введем ряд базовых терминов, которые мы будем использовать в дальнейшем. Драйвер – это программа, непосредственно взаимодействующая с сетевым адаптером. Модуль – это программа, взаимодействующая с драйвером, сетевыми прикладными программами или другими модулями. Драйвер сетевого адаптера и, возможно, другие модули, специфичные для физической сети передачи данных, предоставляют сетевой интерфейс для протокольных модулей семейства TCP/IP. Название блока данных, передаваемого по сети, зависит от того, на каком уровне стека протоколов он находится. Блок данных, с которым имеет дело сетевой интерфейс, называется кадром; если блок данных находится между сетевым интерфейсом и модулем IP, то он называется IP-пакетом; если он – между модулем IP и модулем UDP, то – UDP-датаграммой; если между модулем IP и модулем TCP, то – TCP-сегментом (или транспортным сообщением); наконец, если блок данных находится на уровне сетевых прикладных процессов, то он называется прикладным сообщением. Эти определения, конечно, несовершенны и неполны. К тому же они меняются от публикации к публикации. Рассмотрим потоки данных, проходящие через стек протоколов, изображенный на Рис. 1. В случае использования протокола TCP (Transmission Control Protocol – протокол управления передачей), данные передаются между прикладным процессом и модулем TCP. Типичным прикладным процессом, использующим протокол TCP, является модуль FTP (File Transfer Protocol протокол передачи файлов). Стек протоколов в этом случае будет FTP/TCP/IP/ENET. При использовании протокола UDP (User Datagram Protocol – протокол пользовательских датаграмм), данные передаются между прикладным процессом и модулем UDP. Например, SNMP (Simple Network Management Protocol – простой протокол управления сетью) пользуется транспортными услугами UDP. Его стек протоколов выглядит так: SNMP/UDP/IP/ENET. Введем ряд базовых терминов, которые мы будем использовать в дальнейшем.


Когда Ethernet-кадр попадает в драйвер сетевого интерфейса Ethernet, он может быть направлен либо в модуль ARP (Address Resolution Protocol адресный протокол), либо в модуль IP (Internet Protocol – межсетевой протокол). На то, куда должен быть направлен Ethernet-кадр, указывает значение поля типа в заголовке кадра. Если IP-пакет попадает в модуль IP, то содержащиеся в нем данные могут быть переданы либо модулю TCP, либо UDP, что определяется полем протокол в заголовке IP-пакета. Если UDP-датаграмма попадает в модуль UDP, то на основании значения поля порт в заголовке датаграммы определяется прикладная программа, которой должно быть передано прикладное сообщение. Если TCP- сообщение попадает в модуль TCP, то выбор прикладной программы, которой должно быть передано сообщение, осуществляется на основе значения поля порт в заголовке TCP-сообщения. Передача данных в обратную сторону осуществляется довольно просто, так как из каждого модуля существует только один путь вниз. Каждый протокольный модуль добавляет к пакету свой заголовок, на основании которого машина, принявшая пакет, выполняет демультиплексирование. Данные от прикладного процесса проходят через модули TCP или UDP, после чего попадают в модуль IP и оттуда – на уровень сетевого интерфейса. Хотя технология internet поддерживает много различных сред передачи данных, здесь мы будем предполагать использование Ethernet, так как именно эта среда чаще всего служит физической основой для IP-сети. Машина на Рис. 1 имеет одну точку соединения с Ethernet. Шестибайтный Ethernet-адрес является уникальным для каждого сетевого адаптера и распознается драйвером. Машина имеет также четырехбайтный IP-адрес. Этот адрес обозначает точку доступа к сети на интерфейсе модуля IP с драйвером. IP-адрес должен быть уникальным в пределах всей сети Internet.Работающая машина всегда знает свой IP- адрес и Ethernet-адрес.


Послесловие Возможности Internet настолько широки, насколько у человека только может хватить фантазии. Сетевая технология уже серьезно зарекомендовала себя в качестве наилучшего источника информации. Не следует думать, что все изменения Интернета остались позади. По названию и географически Интернет является сетью, но это порождение компьютерной, а не традиционной телефонной или телевизионной индустрии. Чтобы передовой уровень Интернета сохранялся, изменения должны продолжаться, и они будут продолжены, а дальнейшее развитие будет идти в темпе, присущем компьютерной индустрии. Происходящие в наши дни изменения направлены на предоставление таких новых услуг, как передача данных в реальном масштабе времени. Повсеместная доступность сетей, и в первую очередь Интернета, в сочетании с мощными, компактными и доступными по цене вычислительными и коммуникационными средствами (ПК-блокноты, двунаправленные пейджеры, персональные цифровые секретари, сотовые телефоны и т. п.) делает возможным построение новых способов мобильных вычислений и коммуникаций. Поэтому особо важно именно сегодня обратить свое внимание к данной технологической перспективе, и постараться сделать все возможное для обширного использования Internet в сфере образования. Литература


Информация получена из глобальной сети по адресам: support/internet.htm museums/internet/index.htm

В развитии сетевых технологий явно выделяются три основные тенденции: рост числа подключенных мобильных клиентов, совершенствование имеющихся и появление новых веб-сервисов и увеличение доли онлайнового видеотрафика.

«Американцы нуждаются в телефоне, а мы — нет. У нас есть много посыльных.» Сэр У. Прис, главный инженер британского почтового ведомства, 1878 год.

«Кто, черт возьми, хочет слышать разговор актеров?» Г.М. Уорнер, Warner Bros, 1927 год.

«Я думаю, что мировой рынок может достигнуть пяти компьютеров.» Томас Ватсон, руководитель IBM, 1943 год.

«Телевидение не сможет провести на любом захваченном им рынке и первых шести месяцев. Людям скоро надоест смотреть на фанерный ящик каждую ночь.» Дэррил Занук, 20th Century Fox, 1946 год.

В первом десятилетии XXI века Интернет «сменил статус» с глобальной компьютерной сети на «глобальное информационное пространство», проявив себя как в социальной, так и в экономической сферах и продолжая развиваться. Возможность доступа к Сети не только с компьютера, но и с других устройств, растущая популярность онлайновых версий традиционно офф-лайновых телекоммуникационных услуг (телефония, радио, телевидение), уникальные онлайновые сервисы — все это способствует продолжающемуся росту числа пользователей Интернет и, как следствие, увеличению трафика. По прогнозам компании Cisco, представленным в «Индексе развития визуальных сетевых технологий », к 2015 году глобальный объем трафика превысит 50 эксабайт (при 22 эксабайтах в 2010 году). Львиную долю в генерации трафика займет онлайновое видео, объем которого в 2011 году впервые превысил совокупный трафик других типов (голос+данные). К 2015 году объем видеотрафика составит более 30 эксабайт (при 14-15 эксабайт в 2010 г.). Основным средством доступа к контенту останется Интернет, при том, что увеличится доля трафика с мобильных устройств, напрямую подключенных к этой сети. Объем голосового трафика увеличится незначительно, т.к. на смену «телефонному» голосовому общению идет видеотелефонная связь.

Доступ к ресурсам

Прогнозируемое увеличение сетевой активности возможно повлияет на ускоренный переход телекоммуникационных компаний от имеющейся сетевой инфраструктуры к реализации концепции мультисервисной сети ().

Рис. 1. Концепция мультисервисной сети

Мультисервисная сеть - это сетевая среда, способная передавать аудио-, видеопотоки и данные в унифицированном (цифровом) формате по единому протоколу (сетевой уровнь: IP v6). Пакетная коммутация, используемая вместо коммутации каналов, делает мультисервисную сеть постоянно готовой к использованию. Протоколы резервирования полосы пропускания, управления приоритетами передачи и качества обслуживания (QоS) позволяют дифференцировать услуги, предоставляемые для различных типов трафика. Это гарантирует прозрачное и единообразное подключение к сети и получение доступа к сетевым ресурсам и сервисам как для существующих клиентских устройств, так и для тех, что появятся в ближайшем будущем. Проводной доступ в мультисервисной сети станет еще быстрее, а мобильный — еще подешевеет.

Интернет-радио

Потоковое Интернет-радио появилось в конце 90-х годов XX в. и быстро набрало популярность. Ведущие радиостанции представили пользователям возможность слушать эфирные программы через браузер. С ростом количества сетевых радиостанций сторонние разработчики стали предлагать пользователям специализированные клиентские приложения — Интернет-радио проигрыватели.

Примером Интернет радио-плеера является программа «Radiocent». Помимо основной функции, онлайн-радио , этот плеер представляет следующие возможности: доступ к десяткам тысяч (!) Интернет-радиостанций; гибкое управление списком воспроизведения; поиск музыки и радио онлайн по странам и жанрам; возможность производить запись с эфира в формате mp3. Windows-версию программы «Radiocent» можно бесплатно скачать на официальном сайте.


Интерфейс программы «Radiocent»

Сервисы

Видеосвязь станет основным видом абонентской связи, а телевидение переживет трансформацию, в результате которой фактически произойдет слияние телевизора и персонального компьютера. Телевизоры с встроенным браузером уже имеются на рынке, а через 3-5 лет даже уже в России провайдеры будут представлять не «оцифрованное» эфирное телевидение, а настоящее цифровое (интерактивность + HDTV).

Доля онлайновых мультимедийных сервисов увеличится, фильмы и музыка онлайн станет доступнее и качественнее.

Рынок программного обеспечения сместится в сторону приложений для мобильных устройств, таких как смартфоны и планшеты. Наибольшую популярность приобретут веб-сервисы , заменяющие традиционно оффлайновые приложения. Работать с сетевыми пакетами прикладных программ можно будет через Интернет по модели « программное обеспечение как сервис ». Для ПК будет разрабатываться только 20%-25% программных продуктов.

Развитие интернет-коммерции приведет к росту числа товаров и услуг, которые можно будет заказать в сетевых маркетах. Привычный опыт совершения покупок может полностью измениться: не нужно будет идти в магазин за продуктами. Достаточно будет со смартфона зайти на сайт супермаркета и сделать заказ нужных продуктов, сразу же со смартфона его оплатить и дождаться доставки.

Развитие интернет-банкинга приведет к появлению приложений «клиент-банк» для смартфонов. Визирование финансовых операций в таком приложении будет осуществлятся биометрически или сенсорными «жестами» на тачскрине.

Сервисы «виртуальной реальности» позволят «увидеть» себя в автомобиле понравившейся модели или «примерить» одежду определенного типа в заданных условиях.

Постоянный адрес этой страницы:

Для того, чтобы разобраться как устроена локальная сеть , необходимо разобраться в таком понятии, как сетевая технология .

Сетевая технология состоит из двух компонентов: сетевых протоколов и аппаратуры, обеспечивающей работу этих протоколов. Протоколом в свою очередь является набор «правил», с помощью которых компьютеры, находящиеся в сети, могут соединяться друг с другом, а также обмениваться информацией. С помощью сетевых технологий у нас есть Интернет, есть локальная связь между компьютерами, стоящими у вас дома. Еще сетевые технологии называют базовыми , но также имеют еще одно красивое название – сетевые архитектуры .

Сетевые архитектуры определяют несколько параметров сети , о которых необходимо иметь небольшое представление, чтобы разобраться в устройстве локальной сети:

1)Скорость передачи данных. Определяет, какое количество информации, которая обычно измеряется в битах, может быть передана через сеть за определенное время.

2)Формат сетевых кадров. Информация, передаваемая через сеть, существует в виде так называемых «кадров» — пакетов информации. Сетевые кадры в разных сетевых технологиях имеют различные форматы передаваемых пакетов информации.

3)Тип кодирования сигналов. Определяет каким образом с помощью электрических импульсов, информация кодируется в сети.

4)Среда передачи. Это материал (обычно кабель), через который проходит поток информации – той самой, которая в итоге выводится на экраны наших мониторов.

5)Топология сети. Это схема сети, в которой есть «ребра», представляющие собой кабеля и «вершины» — компьютеры, к которым эти кабеля тянутся. Распространены три основных вида схем сетей: кольцо, шина и звезда.

6)Метод доступа к среде передачи данных. Используется три метода доступа к сетевой среде: детерминированный метод, случайный метод доступа и приоритетная передача. Наиболее распространен детерминированный метод, при котором при помощи специального алгоритма, время использования передающей среды делится между всеми компьютерами находящимися в среде. В случае случайного метода доступа к сети компьютеры состязаются в доступе сети. Такой метод имеет ряд недостатков. Одним из таких недостатков является потеря части передаваемой информации из-за столкновения пакетов информации в сети. Приоритетный доступ обеспечивает соответственно наибольший объем информации к установленной приоритетной станции.

Набор этих параметров определяет сетевую технологию.

В настоящее время широко распространена сетевая технология IEEE802.3/Ethernet . Широкое распространение она получила, благодаря простым и недорогим технологиям. Также популярна за счёт того, что обслуживание таких сетей проще. Топология Ethernet сетей обычно строится в виде «звезды», либо «шины». Средой передачи в таких сетях применяются как тонкие, так и толстые коаксиальные кабеля , а также витые пары и оптоволоконные кабеля . Протяженность сетей Ethernet обычно колеблется от 100 до 2000 метров. Скорость передачи данных в таких сетях обычно около 10 мбит/с. В сетях Ethernet обычно используется метод доступа CSMA/CD, относящийся к децентрализованным случайным методам доступа к сети.

Существуют также высокоскоростные варианты сети Ethernet: IEEE802.3u/Fast Ethernet и IEEE802.3z/Gigabit Ethernet , обеспечивающие скорость передачи данных до 100 мбит/с и до 1000 мбит/с соответственно. В этих сетях в качестве среды передачи используется преимущественно оптоволокно , либо экранированная витая пара .

Существуют также менее распространенные, но при этом повсеместно использующиеся сетевые технологии.

Сетевая технология IEEE802.5/Token-Ring характерна тем, что все вершины или узлы (компьютеры) в такой сети объединены в кольцо, используют маркерный метод доступа к сети, поддерживают экранированную и неэкранированную витую пару , а также оптоволокно в качестве передающей среды. Скорость в сети Token-Ring до 16 мбит/с. Максимальное количество узлов, находящихся в таком кольце, составляет 260, а длина всей сети может достигать 4000 метров.

Прочитайте по теме следующие материалы:

Локальная сеть IEEE802.4/ArcNet особенна тем, что в ней для передачи данных используется метод доступа с помощью передачи полномочий. Эта сеть является одной из самых старейших и ранее популярных в мире. Такая популярность обусловлена надежностью и дешевизной сети. В наше время такая сетевая технология менее распространена, так как скорость в такой сети довольно низкая – около 2,5 мбит/с. Как и большинство других сетей в качестве передающей среды использует экранированные и неэкранированные витые пары и оптоволоконные кабеля, которые могут образовывать сеть длиной до 6000 метров и включать в себя до 255 абонентов.

Сетевая архитектура FDDI (Fiber Distributed Data Interface) , базируется на IEEE802.4/ArcNet и имеет большую популярность из-за своей высокой надежности. Такая сетевая технология включает в себя два оптоволоконных кольца , протяженностью до 100 км. При этом также обеспечивается высокая скорость передачи данных в сети – около 100 мбит/с. Смысл создания двух оптоволоконных колец состоит в том, что по одному из колец проходит путь с резервными данными. Таким образом снижается шанс потери передаваемой информации. В такой сети может находиться до 500 абонентов, что также является преимуществом перед другими сетевыми технологиями.