Максимальная длина волны формула. Диапазоны волн в порядке убывания

Длина волны – это расстояние между двумя соседними точками, которые колеблются в одной фазе; как правило, понятие "длина волны" ассоциируется с электромагнитным спектром. Метод вычисления длины волны зависит от данной информации. Воспользуйтесь основной формулой, если известны скорость и частота волны. Если нужно вычислить длину световой волны по известной энергии фотона, воспользуйтесь соответствующей формулой.

Шаги

Часть 1

Вычисление длины волны по известным скорости и частоте

    Воспользуйтесь формулой для вычисления длины волны. Чтобы найти длину волны, разделите скорость волны на частоту. Формула: λ = v f {\displaystyle \lambda ={\frac {v}{f}}}

    Используйте соответствующие единицы измерения. Скорость измеряется в единицах метрической системы, например, в километрах в час (км/ч), метрах в секунду (м/с) и так далее (в некоторых странах скорость измеряется в британской системе, например, в милях в час). Длина волны измеряется в нанометрах, метрах, миллиметрах и так далее. Частота, как правило, измеряется в герцах (Гц).

    • Единицы измерения конечного результата должны соответствовать единицам измерения исходных данных.
    • Если частота дана килогерцах (кГц), или скорость волны в километрах в секунду (км/с), преобразуйте данные значения в герцы (10 кГц = 10000 Гц) и в метры в секунду (м/с).
  1. Известные значения подставьте в формулу и найдите длину волны. В приведенную формулу подставьте значения скорости и частоты волны. Разделив скорость на частоту, вы получите длину волны.

    Воспользуйтесь приведенной формулой, чтобы вычислить скорость или частоту. Формулу можно переписать в другом виде и вычислить скорость или частоту, если дана длина волны. Чтобы найти скорость по известным частоте и длине волны, используйте формулу: v = λ f {\displaystyle v={\frac {\lambda }{f}}} . Чтобы найти частоту по известным скорости и длине волны, используйте формулу: f = v λ {\displaystyle f={\frac {v}{\lambda }}} .

    Часть 2

    Вычисление длины волны по известной энергии фотона
    1. Вычислите длину волны по формуле для вычисления энергии фотона. Формула для вычисления энергии фотона: E = h c λ {\displaystyle E={\frac {hc}{\lambda }}} , где E {\displaystyle E} – энергия фотона, измеряемая в джоулях (Дж), h {\displaystyle h} – постоянная Планка, равная 6,626 x 10 -34 Дж∙с, c {\displaystyle c} – скорость света в вакууме, равная 3 x 10 8 м/с, λ {\displaystyle \lambda } – длина волны, измеряемая в метрах.

      • В задаче энергия фотона будет дана.
    2. Перепишите представленную формулу, чтобы найти длину волны. Для этого проделайте ряд математических операций. Обе стороны формулы умножьте на длину волны, а затем обе стороны разделите на энергию; вы получите формулу: λ = h c E {\displaystyle \lambda ={\frac {hc}{E}}} . Если энергия фотона известна, можно вычислить длину световой волны.

Абсолютно все в этом мире происходит с какой-либо скоростью . Тела не перемещаются моментально, для этого требуется время. Не являются исключением и волны, в какой бы среде они не распространялись.

Скорость распространения волны

Если вы бросите камень в воду озера, то возникшие волны дойдут до берега не сразу. Для продвижения волн на некоторое расстояние необходимо время, следовательно, можно говорить о скорости распространения волн.

Скорость волны зависит от свойств среды, в которой она распространяется. При переходе из одной среды в другую, скорость волн меняется. Например, если вибрирующий железный лист засунуть концом в воду, то вода покроется рябью маленьких волн, однако скорость их распространения будет меньше, чем в железном листе. Это несложно проверить даже в домашних условиях. Только не порежьтесь о вибрирующий железный лист...

Длина волны

Существует еще одна важная характеристика это длина волны. Длина волны это такое расстояние, на которое распространяется волна за один период колебательных движений . Легче понять это графически.

Если зарисовать волну в виде рисунка или графика, то длиной волны будет являться расстояние между любыми ближайшими гребнями либо впадинами волны, либо между любыми другими ближайшими точками волны, находящимися в одинаковой фазе.

Так как длина волны это расстояние, пройденное ею, то и найти эту величину можно, как и любое другое расстояние, умножив скорость прохождения на единицу времени. Таким образом, длина волны связана со скоростью распространения волны прямо пропорционально. Найти длину волны можно по формуле:

где λ длина волны, v скорость волны, T период колебаний.

А учитывая, что период колебаний обратно пропорционален частоте этих же колебаний: T=1⁄υ, можно вывести связь скорости распространения волны с частотой колебаний :

v=λυ .

Частота колебаний в разных средах

Частота колебаний волн не меняется при переходе из одной среды в другую. Так, например, частота вынужденных колебаний совпадает с частотой колебаний источника. Частота колебаний не зависит от свойств среды распространений. При переходе из одной среды в другую меняется лишь длина волны и скорость ее распространения.

Эти формулы справедливы как для поперечных, так и для продольных волн. При распространении продольных волн длина волны будет расстоянием между двумя ближайшими точками с одинаковым растяжением или сжатием. Она также будет совпадать с расстоянием, пройденным волной за один период колебаний, поэтому формулы будут полностью подходить и в этом случае.

Диапазоны плавно пере-ходят друг в друга, чёткой границы между ними нет. Поэтому граничные значения длин волн порой весьма условны.

1. Радиоволны (Л > 1 мм). Источниками радиоволн служат колебания зарядов в проводах, антеннах, колебательных контурах. Радиоволны излучаются также во время гроз.

Сверхдлинные волны (Л > 10 км). Хорошо распространяются в воде, поэтому исполь-зуются для связи с подводными лодками.

Длинные волны (1 км < Л < 10 км). Используются в радиосвязи, радиовещании, радионавигации.

Средние волны (100 м < Л < 1 км). Радиовещание. Радиосвязь на расстоянии не более 1500 км.

Короткие волны (10 м < Л < 100 м). Радиовещание. Хорошо отражаются от ионо-сферы; в результате многократных отражений от ионосферы и от поверхности Земли могут распространяться вокруг земного шара. Поэтому на коротких волнах можно ловить радиостанции других стран.

Метровые волны (1м < Л < 10 м). Местное радивещание в УКВ-диапазоне. Напри-мер, длина волны радиостанции «Эхо Москвы» составляет 4 м. Используются также в телевидении (федеральные каналы); так, длина волны телеканала «Россия 1» равна примерно 5 м.

Дециметровые волны (10 см < Л < 1м). Телевидение (дециметровые каналы). На-пример, длина волны телеканала «Animal Planet» приблизительно равна 42 см. Это также диапазон мобильной связи; так, стандарт GSM 1800 использует радиовол-ны с частотой примерно 1800 МГц, т. е. с длиной волны около 17 см. Есть ещё одно хорошо известное вам применение дециметровых волн — это микровол-новые печи. Стандартная частота микроволновой печи равна 2450 МГц (это частота, на которой происходит резонансное поглощение электромагнитного излучения моле-кулами воды). Она отвечает длине волны примерно 12 см. Наконец, в технологиях беспроводной связи Wi-Fi и Bluetooth используется такая же длина волны — 12 см (частота 2400 МГц).

Сантиметровые волны (1 см < Л < 10 см). Это — область радиолокации и спутни-ковых телеканалов. Например, канал НТВ+ ведёт своё телевещание на длинах волн около 2 см.

Инфракрасное излучение (780 нм < Л < 1 мм). Испускается молекулами и атомами нагретых тел. Инфракрасное излучение называется ещё тепловым — когда оно попадает на наше тело, мы чувствуем тепло. Человеческим глазом инфракрасное излучение не воспринимается Мощнейшим источником инфракрасного излучения служит Солнце. Лампы накаливания излучают наибольшее количество энергии (до 80%) в как раз в инфракрасной области спектра. Инфракрасное излучение имеет широкую область применения: инфракрасные обогревате-ли, пульты дистанционного управления, приборы ночного видения, сушка лакокрасочных покрытий и многое другое. При повышении температуры тела длина волны инфракрасного излучения уменьшается, смещаясь в сторону видимого света. Засунув гвоздь в пламя горелки, мы можем наблю-дать это воочию: в какой-то момент гвоздь «раскаляется докрасна», начиная излучать в видимом диапазоне.

Видимый свет (380 нм < Л < 780 нм). Излучение в этом промежутке длин волн воспринимается человеческим глазом. Диапазон видимого света можно разделить на семь интервалов — так называемые спек-тральные цвета.

Красный: 625 нм — 780 нм;

Оранжевый: 590 нм — 625 нм;

Жёлтый: 565 нм — 590 нм;

Зелёный: 500 нм — 565 нм;

Голубой: 485 нм — 500 нм;

Синий: 440 нм — 485 нм;

Фиолетовый: 380 нм — 440 нм.

Глаз имеет максимальную чувствительность к свету в зелёной части спектра.

Ультрафиолетовое излучение (10 нм < Л < 380 нм). Главным источником ультрафиолетового излучения является Солнце. Именно ультрафи-олетовое излучение приводит к появлению загара. Человеческим глазом оно уже не вос-принимается. В небольших дозах ультрафиолетовое излучение полезно для человека: оно повышает иммунитет, улучшает обмен веществ, имеет целый ряд других целебных воздействий и потому применяется в физиотерапии. Ультрафиолетовое излучение обладает бактерицидными свойствами. Например, в боль-ницах для дезинфекции операционных в них включаются специальные ультрафиолетовые лампы. Очень опасным является воздействие УФ излучения на сетчатку глаза — при больших дозах ультрафиолета можно получить ожог сетчатки. Поэтому для защиты глаз (высоко в горах, например) нужно надевать очки, стёкла которых поглощают ультрафиолет.

Рентгеновское излучение (5 пм < Л < 10 нм). Возникает в результате торможения быстрых электронов у анода и стенок газоразряд-ных трубок (тормозное излучение), а также при некоторых переходах электронов внутри атомов с одного уровня на другой (характеристическое излучение).

Рентгеновское излучение легко проникает сквозь мягкие ткани человеческого тела, но по-глощается кальцием, входящим в состав костей. Это даёт возможность хорошо известные вам рентгеновские снимки. В аэропортах вы наверняка видели действие рентгенотелевизионных интроскопов — эти приборы просвечивают рентгеновскими лучами ручную кладь и багаж. Длина волны рентгеновского излучения сравнима с размерами атомов и межатомных рас-стояний в кристаллах; поэтому кристаллы являются естественными дифракционными ре-шётками для рентгеновских лучей. Наблюдая дифракционные картины, получаемые при прохождении рентгеновских лучей сквозь различные кристаллы, можно изучать порядок расположения атомов в кристаллических решётках и сложных молекулах. Так, именно с помощью рент,геност,рукт,урного анализа было определено устройство ряда сложных органических молекул — например, ДНК и гемоглобина. В больших дозах рентгеновское излучение опасно для человека — оно может вызывать раковые заболевания и лучевую болезнь.

Гамма-излучение (Л < 5 пм). Это излучение наиболее высокой энергии. Его проникающая способность намного выше, чем у рентгеновских лучей. Гамма-излучение возникает при переходах атомных ядер из одного состояния в другое, а также при некоторых ядерных реакциях. Некоторые насекомые и птицы способны видеть в ультрафиолете. Например, пчёлы с помощью своего уль-трафиолетового зрения находят нектар на цветах. Источниками гамма-лучей могут быть заряженные частицы, движущиеся со скоростя-ми, близкими к скорости света — в случае, если траектории таких частиц искривлены магнитным полем (так называемое синхротронное излучение). В больших дозах гамма-излучение очень опасно для человека: оно вызывает лучевую бо-лезнь и онкологические заболевания. Но в малых дозах оно может подавлять рост раковых опухолей и потому применяется в лучевой терапии. Бактерицидное действие гамма-излучения используется в сельском хозяйстве (гамма-сте-рилизация сельхозпродукции перед длительным хранением), в пищевой промышленности (консервирование продуктов), а также в медицине (стерилизация материалов).

5. Каково влияние среды на распространение радиоволн?

6. Какие факторы влияют на распространение радиоволн?

ЛАБОРАТОРНАЯ РАБОТА № 4

ВОЛНОВОДНЫЕ ЛИНИИ ПЕРЕДАЧИ ЭНЕРГИИ

Цель занятия: по имеющимся данным рассчитать параметры и характеристики волноводных линий передачи электромагнитной энергии.

1. Краткие сведения по теме

С увеличением частоты потери энергии во внутреннем проводнике и диэлектрике коаксиального фидера возрастают, и его КПД становится малым. В коротковолновой части дециметрового диапазона, в диапазоне сантиметровых и более коротких волн в качестве фидеров применяются волноводы прямоугольного, круглого и эллиптического сечения.

В отличие от двухпроводной и коаксиальной линий с воздушным диэлектриком, в которых электромагнитное поле, как и в плоской волне, не имеет продольных составляющих, распространяется со скоростью света и обладает в направлении распространения периодичностью с длиной волны , в волноводах волны такого типа (их называют поперечными или Т-волнами), распространяться не могут.

В волноводах лишь один из векторов, электрический или магнитный, расположен в плоскости, перпендикулярной направлению распространения. Второй вектор поля (соответственно магнитный или электрический), для обеспечения выполнения граничных условий, обязательно будет иметь продольную составляющую.

Другой особенностью волноводов является то, что в плоскости поперечного сечения напряженности того и другого вектора обладают пространственной периодичностью, подобной стоячим волнам в короткозамкнутой линии. Вдоль каждого из двух взаимно перпендикулярных размеров сечения волновода должно укладываться целое число таких полуволн - m,n (0,1,2,...к ). Значения m и n не могут быть равны нулю одновременно.

Таким образом, в волноводах могут распространяться электромагнитные волны лишь определенных типов: поперечно-магнитные (Е-волны), в которых продольную составляющую имеет вектор Е, и поперечно-электрические (Н-волны), в которых продольную составляющую имеет вектор Н. В каждом из этих типов волн будут различаться волны, имеющие различную периодичность в поперечной плоскости, обозначаемые Н mn , Е mn . Периодичность поля в направлении распространения, т.е. длина волны в вдоль волновода, будет определяться периодом продольной составляющей поля.

Использование волновода в условиях, когда в нем возможно распространение нескольких типов волн, обычно является нежелательным, так как вследствие различия фазовых и групповых скоростей возможны искажения передаваемых сигналов. Поэтому на практике стремятся, чтобы во всем интервале рабочих длин волн имелось только одно, причем наименьшее, значение (к mn )мин. При этом в волноводе будет распространяться основной тип волны. Для выполнения этого требования наибольшая допустимая длина волны передаваемых сигналов не должна превышать кр=2π/ (к mn )мин, а минимальная длина волны должна быть больше, чем кр для ближайшего высшего типа волны.

Если же необходимо, чтобы в волноводе распространялся один из высших типов, то принимают меры для подавления нежелательных типов волн.

Основной для прямоугольного волновода является волна типа Н 10 , которая характеризуется постоянством амплитуд поля Е по оси y и изменением по закону sin(π x/a) по оси x. Фазовая скорость и длина волны типа Н 10 в прямоугольном волноводе определяются внутренним размером широкой стенки волновода и соответственно равны:

.

Групповая скорость волны Н10 в волноводе:

.

Критическая длина волны =2а. По волноводу могут распространяться только волны короче. Для возможности распространения энергии по волноводу необходимо, чтобы a>0,5.

Затухание, в децибелах, на один метр длины, прямоугольного волновода

,

где b- внутренний размер узкой стенки волновода;

- проводимость металла, из которого выполнены стенки волновода, См/м (для меди =5,8*10 7 , латуни марки Л-96 =4,07*10 7).

Реальное затухание в волноводе больше рассчитанного по приведенной формуле в среднем в 1,05-1,2 раза. Увеличение затухания обусловлено шероховатостью стенок волновода и их окислением, которые в формуле не учтены. Уменьшение затухания достигается увеличением поперечного сечения волновода и серебрением его внутренней поверхности. Стабилизация затухания во времени обеспечивается антикоррозийным покрытием, однако увеличение поперечного сечения ограничено из-за возможности появления в волноводе волн высших типов Н 20 , Е 11 и др.

Для распространения волны Н 10 и исключения возможности существования других типов волн необходимо, чтобы выполнялись следующие условия: наиболее длинная волна рабочего диапазона должна быть меньше удвоенной длины широкой стенки волновода, наиболее короткая волна должна быть больше широкой стенки. Узкая стенка волновода обычно меньше половины широкой стенки. Таким образом, внутренние размеры сечения волновода равны:

.

В диапазоне 3,4-3,9 ГГц рекомендуется применять прямоугольные волноводы с внутренним сечением 58X25 мм с затуханием 3,6-4 дБ/100 м и 72X34 мм с затуханием 2-2,4 дБ/100 м, выполненные из латуни марки Л-96 с 96% содержанием меди, секциями длиной до 5 м и толщиной стенок 2 мм. В диапазоне 5,6-6,2 ГГц рекомендуются волноводы с сечениями 40 X20 мм с затуханием 3,5-4 дБ/100 м и 48 X 24 мм с затуханием 3,5-4 дБ/100 м.

Кроме волноводов прямоугольного сечения применяются круглые волноводы, особенно в случаях, когда антенна одновременно используется на прием и передачу и работает с полями, имеющими вертикальную и горизонтальную поляризации. Полям с вертикальной и горизонтальной поляризациями в антенне будут соответствовать в волноводе волны типа Н11 с взаимно перпендикулярными направлениями вектора Е. Работа с взаимно перпендикулярными поляризациями позволяет улучшить развязку между приемниками и передатчиками за счет поляризационной избирательности антенно-волноводного тракта. Последняя будет эффективной только в том случае, когда отсутствует перекрестная поляризация. Перекрестной поляризацией называется явление, когда за счет поля с основной поляризацией появляется поле с перпендикулярной поляризацией. Перекрестная поляризация ухудшает развязку между передающим и приемным трактами. Перекрестная поляризация вызывается эллиптичностью волновода, т.е. отличием сечения волновода от круглого, а также изгибами, вмятинами и небрежным монтажом. При изготовлении круглых волноводов всегда имеется некоторая эллиптичность сечения. При диаметре 70 мм неточность медных волноводов достигает 200 мкм. Для увеличения точности выполнения волноводы такого диаметра изготовляют из стали с медным покрытием, т.е. биметаллическим. Толщина стали биметаллического волновода 3,7 мм, меди 0,3 мм. В таком волноводе отклонение поперечного сечения от расчетной величины не превышает 500 мкм. Установлено, что при совпадении направления вектора Е с одной из осей эллипса поперечного сечения волновода положение плоскости поляризации волны в волноводе не будет изменяться.

Для уменьшения перекрестной поляризации при монтаже стыкуемые секции поворачивают до совпадения осей эллипсов отдельных секций волновода. Для облегчения сборки на волноводных секциях заводы-изготовители ставят метки. Биметаллические волноводы за счет меньшей зеркальности внутренней поверхности имеют затухание примерно на величину 0,2 дБ/100 м большее по сравнению с медными.

Волна типа Н 11 является основной для круглого волновода. Для передачи волны Н 11 диаметр круглого волновода должен быть:

.

Затухание волны Н 11 в волноводе круглого сечения, дБ/м,

где r - внутренний радиус волновода, м; - проводимость металла, из которого выполнены стенки волновода, См/м;- длина волны, м.

Для снижения затухания диаметры волноводов берут больше, чем это определяется условием. Например, в диапазоне частот (3,4 - 3,9) ГГц рекомендуется применять волноводы диаметром 70 мм с затуханием (1,4 - 1,6) дБ/100 м, а в диапазоне (5,6 - 6,2) ГГц - диаметром 46 мм с затуханием (3 -3,5) дБ/100 м. В этом случае кроме основной волны распространяется еще и волна Е 01 . Волновод с 70 мм может применяться на более высоких частотах (например, в диапазоне 6 ГГц), допуская существование еще большего числа волн высших типов.

Для обеспечения распространения лишь основного типа волны высшие типы должны быть подавлены.

Для подавления волн высших типов, имеющих продольную составляющую поля Е, параллельно полю Е подавляемой волны располагают стержни из материала с малой проводимостью, например, диэлектрические стержни, покрытые окисным слоем.

Для увеличения гибкости волноводы гофрируют с шагом гофра (0,12 - 0,15) ср и глубиной гофра приблизительно равной 0,05 ср. При вертикальной подвеске в волноводе возникают осевые усилия, сжимающие малую ось эллипса, причем большие нагрузки вызывают необратимые процессы деформации. При заполнении внутреннего пространства волновода избыточным газовым давлением удлиняется малая ось эллипса. Волноводы допускают давление (1,5 - 2)*10 5 Па. Гибкие волноводы изготовляют большей длины и транспортируют в свернутом виде на барабанах. Эллиптические волноводы применяются в подвижных радиорелейных системах, когда требуются частые развертывания и свертывания линий связи, а также в стационарных радиорелейных системах особенно на участках, где волноводные тракты изменяют свое направление, например при переходе из вертикального положения в горизонтальное.

Жесткие волноводы изготовляются секциями длиной до 5 м, которые на концах заканчиваются фланцами. Фланцевые соединения должны исключить возможность просачивания энергии из волновода и быть герметичными. Фланцы имеют кольцевые канавки, в которые закладывают уплотняющие прокладки из морозостойкой резины и металлические кольца, уплотняющие резину и устраняющие просачивание энергии из волновода.

Недостаточно точное сопряжение волноводов в стыках вызывает отражения. Уменьшение отражений достигается специальной обработкой концов волноводов серебрением (с покрытием палладием) соприкасающихся поверхностей и применением калиброванных болтов или шпилек. Фланцы наружных волноводов должны выдерживать значительную механическую нагрузку. С учетом гололеда нагрузка на верхний фланец при длине вертикального волновода 50 м может достигать 1 т. Медные и латунные волноводы крепятся жестко к телу мачты только в верхней своей части.

Материал волновода (латунь) и мачты (сталь) имеет разные коэффициенты линейного расширения. Закрепление волноводов к мачте в нескольких точках при изменении температуры приведет к деформации волновода. Вертикальные волноводы для устранения поперечных колебаний снабжаются проходными муфтами, устанавливаемыми через (5-7) м. Промежуточное крепление волноводов осуществляется через (15-20) м посредством пружинных подвесов. Биметаллические волноводы позволяют производить жесткое крепление по всей длине без пружинных подвесов.

Наличие влаги в волноводе увеличивает его затухание. Во избежание этого наружные волноводы герметизируют и содержат под избыточным давлением (0,2-0,5)*10 3 Па осушенного воздуха. Для герметизации в нижней и верхней частях волноводов устанавливают герметизирующие вставки. Герметизирующие вставки выполняются в виде волноводных разъемов с двумя тонкими диэлектрическими пленками, установленными поперек волновода.

Пример 1. Выбрать сечение прямоугольного волновода для работы с волной типа Н 10 на частоте 10ГГц.

Длина волны в свободном пространстве:

Внутренний размер широкой стенки волновода:

a=(0,525-0,95)=0,7*3=2,1см.

Внутренний размер узкой стенки волновода:

b=(0,3-0,5)a=0,5*2,1=1см.

Выбираем сечение волновода 10х21мм 2 . Данный волновод обеспечивает возможность работы в диапазоне волн:

=а/(0,525-0,95)=2,1/(0,525-0,95)=(2,2-4) см,

что соответствует частотам (7,5-13,6) ГГц.

Пример 2. Для работы в диапазоне частот (5,6-6,2) ГГц выбрать размеры сечения прямоугольного волновода и определить затухание в нем. Волновод выполнен из меди =5,8*10 7 См/м.

Решение: Рабочему диапазону соответствуют длины волн:

При выборе широкой стенки волновода будем исходить из условия

Для получения минимального затухания выберем максимально допустимую ширину волновода, равную 40мм, сечение волновода 40х20мм 2 . В исключительных случаях можно использовать волновод с а=0,99 кор =48мм и сечением 48х24мм 2 .

Затухание в волноводе на частоте 5,6 ГГц

=

Пример 3. Для работы в диапазоне частот (3,4-3,9) ГГц выбрать диаметр круглого волновода и определить затухание в нем. Материал волновода латунь Л-96 =4,07См/м.

Диаметр волновода, допускающий распространение кроме волны Н 11 еще и волны Е 01 , определяется условием:

0,765 дл

0,765 дл =0,765*8,8=6,7см=67мм

0,925 кор =0,975*7,7=7,1см=71мм

Стремясь получить наименьшее затухание и допуская возможность распространения волны Е 01 , из условия 68

Затухание волны Н 11 на минимальной частоте диапазона 3,4ГГц

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β: