Сеть хранения данных san. Системы хранения данных (СХД)

Системы хранения данных с прямым подключением (DAS) реализуют самый известный тип соединения. При использовании DAS сервер имеет персональную связь с СХД и почти всегда является единоличным пользователем устройства. При этом сервер получает блочный доступ к системе хранения данных, то есть обращается непосредственно к блокам данных.

Системы хранения данных такого типа достаточно простые и обычно недорогие. Недостатком прямого способа подключения является небольшое расстояние между сервером и устройством хранения. Типичным интерфейсом DAS является SAS.

Network Attached Storage (NAS)

Сетевые системы хранения данных (NAS), также известные как файловые серверы, предоставляют свои сетевые ресурсы клиентам по сети в виде совместно используемых файлов или точек монтирования каталогов. Клиенты используют протоколы сетевого доступа к файлам, такие как SMB (ранее известный как CIFS) или NFS. Файловый сервер, в свою очередь, использует протоколы блочного доступа к своему внутреннему хранилищу для обработки запросов файлов клиентами. Так как NAS работает по сети, хранилище может быть очень далеко от клиентов. Множество сетевых систем хранения данных предоставляет дополнительные функции, такие как снятие образов хранилища, дедупликация или компрессия данных и другие.

Storage Area Network (SAN)

Сеть хранения данных (SAN) предоставляет клиентам блочный доступ к данным по сети (например, Fibre Channel или Ethernet). Устройства в SAN не принадлежат одному серверу, а могут использоваться всеми клиентами сети хранения. Возможно разделение дискового пространства на логические тома, которые выделяются отдельным хост-серверам. Эти тома не зависят от компонентов SAN и их размещения. Клиенты обращаются к хранилищу данных с использованием блочного типа доступа, как и при DAS подключении, но, так как SAN использует сеть, устройства хранения данных могут располагаться далеко от клиентов.

В настоящее время SAN архитектура используют протокол SCSI (Small Computer System Interface) для передачи и получения данных. Fibre Channel (FC) SAN инкапсулируют протокол SCSI в Fibre Channel фреймы. Сети хранения данных, использующие iSCSI (Internet SCSI) используют в качестве транспорта SCSI TCP/IP пакеты. Fibre Channel over Ethernet (FCoE) инкапсулирует протокол Fibre Channel в пакеты Ethernet, используя относительно новую технологию DCB (Data Center Bridging), которая вносит набор улучшений в традиционный Ethernet и может в настоящее время быть развернута на 10GbE инфраструктуре. Благодаря тому, что каждая из этих технологий позволяет приложениям получать доступ к хранилищу данных используя один и тот же протокол SCSI, становится возможным использовать их все в одной компании или мигрировать с одной технологии на другую. Приложения, запущенные на сервере, не могут различить FC, FCoE, iSCSI и даже отличить DAS от SAN.

Ведется множество обсуждений по поводу выбора FC или iSCSI для построения сети хранения данных. Некоторые компании фокусируются на невысокой стоимости первоначального развертывания iSCSI SAN, другие выбирают высокую надежность и доступность Fibre Channel SAN. Хотя low-end решения iSCSI дешевле, чем Fibre Channel, с ростом производительности и надежности iSCSI SAN ценовое преимущество исчезает. При этом появляются некоторые реализации FC, которые проще в использовании, чем большинство iSCSI решений. Поэтому выбор той или иной технологии зависит от бизнес-требований, существующей инфраструктуры, экспертизы и бюджета.

Большинство крупных организаций, которые используют сети хранения данных, выбирают Fibre Channel. Эти компании обычно требуют проверенную технологию, имеют необходимость в высокой пропускной способности и обладают бюджетом для покупки самого надежного и производительного оборудования. Кроме того, они располагают персоналом для управления сетью хранения данных. Некоторые из таких компаний планируют продолжать инвестиции в Fibre Channel инфраструктуру, другие же инвестируют в решения iSCSI, особенно 10GbE, для своих виртуализированных серверов.

Небольшие компании чаще выбирают iSCSI из-за низкого ценового порога входа, при этом они получают возможность для дальнейшего масштабирования SAN. Недорогие решения обычно используют технологию 1GbE; решения от 10GbE стоят существенно дороже и как правило не рассматриваются в качестве SAN начального уровня.

Unified Storage

Универсальные системы хранения данных (Unified Storage) совмещают в себе технологии NAS и SAN в едином интегрированном решении. Эти универсальные хранилища позволяют использовать как блочный, так и файловый тип доступа к общим ресурсам, кроме того, управление такими устройствами проще благодаря ПО, обеспечивающему централизованное управление.

Зависимость бизнес-процессов предприятия от ИТ-сферы постоянно растет. На сегодня вопросу непрерывности работы ИТ-сервисов уделяют внимание не только крупные компании, но и представители среднего, а зачастую и малого бизнеса.

Одним из центральных элементов обеспечения отказоустойчивости является система хранения данных (СХД) - устройство на котором централизовано храниться вся информация. СХД характеризуется высокой масштабируемостью, отказоустойчивостью, возможностью выполнять все сервисные операции без остановки работы устройства (в том числе замену компонентов). Но стоимость даже базовой модели измеряется в десятках тысяч долларов. Например, Fujitsu ETERNUS DX100 с 12-ю дисками Nearline SAS 1Tb SFF (RAID10 6TB) стоит порядка 21 000 USD , что для небольшой компании очень дорого.

В нашей статье мы предлагаем рассмотреть варианты организации бюджетного хранилища , которое не проигрывает по производительности и надежности классическим системам. Для его реализации предлагаем использовать CEPH .

Что такое CEPH и как он работает?

CEPH – хранилище на базе свободного ПО, представляет из себя объединение дисковых пространств нескольких серверов (количество серверов на практике измеряется десятками и сотнями). CEPH позволяет создать легкомасштабируемое хранилище с высокой производительностью и избыточностью ресурсов. CEPH может использоваться как в качестве объектного хранилища (служить для хранения файлов) так и в качестве блочного устройства (отдача виртуальных жестких дисков).

Отказоустойчивость хранилища обеспечивается репликацией каждого блока данных на несколько серверов. Количество одновременно хранимых копий каждого блока называется фактором репликации, по умолчанию его значение равно 2. Схема работы хранилища показана на рисунке 1, как видим информация разбивается на блоки, каждый из которых распределяется по двум разным нодам.

Рисунок 1 - Распределение блоков данных


Если на серверах не используются отказоустойчивые дисковые массивы, для надежного хранения данных рекомендуется использовать более высокое значение фактора репликации. В случае выхода из строя одного из серверов CEPH фиксирует недоступность блоков данных (рисунок 2), которые на нем размещены, ожидает определенное время (параметр настраивается, по умолчанию 300 сек.), после чего начинает воссоздание недостающих блоков информации в другом месте (рисунок 3).

Рисунок 2 - Выход из строя одной ноды


Рисунок 3 - Восстановление избыточности


Аналогично, в случае добавления в кластер нового сервера происходит ребаллансировка хранилища с целью равномерного заполнения дисков на всех нодах. Механизм который контролирует процессы распределения блоков информации в кластере CEPH называется CRUSH.

Для получения высокой производительности дискового пространства в кластерах CEPH рекомендуется использовать функционал cache tiering (многоуровневое кэширование). Смысл его заключается в том, чтобы создать отдельный высокопроизводительный пул и использовать его для кэширования, основная же информация будет размещена на более дешевых дисках (рисунок 4).

Рисунок 4 - Логическое представление дисковых пулов


Многоуровневое кэширование будет работать следующим образом: запросы клиентов на запись будут записываться в самый быстрый пул, после чего перемещаться на уровень хранения. Аналогично по запросам на чтение – информация при обращении будет подниматься на уровень кэширования и обрабатываться. Данные продолжают оставаться на уровне кэша пока не становятся неактивными или пока не теряют актуальность (рисунок 5). Стоит отметить, что кэширование можно настроить только на чтение, в этом случае запросы на запись будут заноситься прямо в пул хранения.

Рисунок 5 - Принцип работы кэш-тирринг


Рассмотрим реальные сценарии использования CEPH в организации для создания хранилища данных. В качестве потенциального клиента рассматриваются организации малого и среднего бизнеса, где будет наиболее востребована эта технология. Мы рассчитали 3 сценария использования описанного решения:

  1. Производственное или торговое предприятие с требованием к доступности внутренней ERP системы и файлового хранилища 99,98% в год, 24/7.
  2. Организация, которой для ее бизнес-задач требуется развернуть локальное частное облако.
  3. Очень бюджетное решение для организации отказоустойчивого блочного хранилища данных, полностью независимое от аппаратного обеспечения с доступностью 99,98% в год и недорогим масштабированием.

Сценарий использования 1. Хранилище данных на базе CEPH

Рассмотрим реальный пример применения CEPH в организации. Например, нам требуется отказоустойчивое производительное хранилище объемом 6 Тб, но затраты даже на базовую модель СХД с дисками составляют порядка $21 000 .

Собираем хранилище на базе CEPH. В качестве серверов предлагаем использовать решение Supermicro Twin (Рисунок 6). Продукт представляет собой 4 серверные платформы в едином корпусе высотой 2 юнита, все основные узлы устройства дублируются, что обеспечивает его непрерывное функционирование. Для реализации нашей задачи будет достаточно использовать 3 ноды, 4-я будет в запасе на будущее.




Рисунок 6 - Supermicro Twin


Комплектуем каждую из нод следующим образом: 32 Гб ОЗУ, 4-х ядерный процессор 2,5 Ггц, 4 SATA диска по 2 Тб для пула хранения объединяем в 2 массива RAID1, 2 SSD диска для пула кэширования также объединяем в RAID1 . Стоимость всего проекта указана в таблице 1.

Таблица 1. Комплектующие для хранилища на базе CEPH

Комплектующие Цена, USD Кол-во Стоимость, USD
4 999,28 1 4 999,28
139,28 6 835,68
Процессор Ivy Bridge-EP 4-Core 2.5GHz (LGA2011, 10MB, 80W, 22nm) Tray 366,00 3 1 098,00
416,00 12 4 992,00
641,00 6 3 846,00
ИТОГО 15 770,96

Вывод: В результате построения хранилища получим дисковый массив 6Tb c затратами порядка $16 000 , что на 25% меньше чем закупка минимальной СХД, при этом на текущих мощностях можно запустить виртуальные машины, работающие с хранилищем, тем самым сэкономить на покупке дополнительных серверов. По сути – это законченное решение.

Серверы, из которых строится хранилище, можно использовать не только как вместилище жестких дисков, но в качестве носителей виртуальных машин или серверов приложений.

Сценарий использования 2. Построение частного облака

Задача состоит в том, чтобы развернуть инфраструктуру для построения частного облака с минимальными затратами.

Построение даже небольшого облака состоящего из например из 3-х носителей примерно в $36 000 : $21 000 – стоимость СХД + $5000 за каждый сервер с 50% наполнением.

Использование CEPH в качестве хранилища позволяет совместить вычислительные и дисковые ресурсы на одном оборудовании. То есть не нужно закупать отдельно СХД - для размещения виртуальных машин будут использоваться диски установленные непосредственно в серверы.

Краткая справка:
Классическая облачная структура представляет из себя кластер виртуальных машин, функционирование которых обеспечивают 2 основных аппаратных компонента:

  1. Вычислительная часть (compute) - серверы, заполненные оперативной памятью и процессорами, ресурсы которых используются виртуальными машинами для вычислений
  2. Система хранения данных (storage) – устройство наполненное жесткими дисками, на котором хранятся все данные.

В качестве оборудования берем те же серверы Supermicro, но ставим более мощные процессоры – 8-ми ядерные с частотой 2,6 GHz, а также 96 Гб ОЗУ в каждую ноду , так как система будет использоваться не только для хранения информации, но и для работы виртуальных машин. Набор дисков берем аналогичный первому сценарию.

Таблица 2. Комплектующие для частного облака на базе CEPH

Комплектующие Цена, USD Кол-во Стоимость, USD
Supermicro Twin 2027PR-HTR: 4 hot-pluggable systems (nodes) in a 2U form factor. Dual socket R (LGA 2011), Up to 512GB ECC RDIMM, Integrated IPMI 2.0 with KVM and Dedicated LAN. 6x 2.5" Hot-swap SATA HDD Bays. 2000W Redundant Power Supplies 4 999,28 1 4 999,28
Модуль памяти Samsung DDR3 16GB Registered ECC 1866Mhz 1.5V, Dual rank 139,28 18 2 507,04
Процессор Intel Xeon E5-2650V2 Ivy Bridge-EP 8-Core 2.6GHz (LGA2011, 20MB, 95W, 32nm) Tray 1 416,18 3 4 248,54
Жесткий диск SATA 2TB 2.5" Enterprise Capacity SATA 6Gb/s 7200rpm 128Mb 512E 416 12 4 992,00
Твердотельный накопитель SSD 2.5"" 400GB DC S3710 Series. 641 6 3 846,00
ИТОГО 20 592,86

Собранное облако будет иметь следующие ресурсы с учетом сохранения стабильности при выходе из строя 1-й ноды:

  • Оперативная память: 120 Гб
  • Дисковое пространство 6000 Гб
  • Процессорные ядра физические: 16 Шт.

Собранный кластер сможет поддерживать порядка 10 средних виртуальных машин с характеристиками: 12 ГБ ОЗУ / 4 процессорных ядра / 400 ГБ дискового пространства.

Также стоит учесть что все 3 сервера заполнены только на 50% и при необходимости их можно доукомплектовать, тем самым увеличив пул ресурсов для облака в 2 раза.

Вывод: Как видим, мы получили как полноценный отказоустойчивый кластер виртуальных машин, так и избыточное хранилище данных - выход из строя любого из серверов не критичен – система продолжит функционирование без остановки, при этом стоимость решения примерно в 1,5 раза ниже , чем купить СХД и отдельные сервера.

Сценарий использования 3. Построение сверхдешевого хранилища данных

Если бюджет совсем ограничен и нет денег на закупку оборудования описанного выше, можно закупить серверы бывшие в употреблении, но на дисках экономить не стоит – их настоятельно рекомендуется купить новые.

Предлагаем рассмотреть следующую структуру: закупается 4 серверные ноды, в каждый сервер ставиться по 1 SSD-диску для кэширования и по 3 SATA диска . Серверы Supermicro с 48 ГБ ОЗУ и процессорами линейки 5600 можно сейчас купить примерно за $800 .

Диски не будут собираться в отказоустойчивые массивы на каждом сервере, а будут представлены как отдельное устройство. В связи с этим для повышения надежности хранилища будем использовать фактор репликации 3. То есть у каждого блока будет 3 копии. При такой архитектуре зеркалирования дисков SSD кеша не требуется, так как происходит автоматическое дублирование информации на другие ноды.

Таблица 3. Комплектующие для стореджа

Вывод: В случае необходимости в данном решении можно использовать диски большего объема, либо заменить их на SAS, если нужно получить максимальную производительность для работы СУБД. В данном примере в результате получим хранилище объемом 8 ТБ с очень низкой стоимостью и очень высокой отказоустойчивостью. Цена одного терабайта получилась в 3,8 раза дешевле , чем при использовании промышленной СХД за $21000.

Итоговая таблица, выводы

Конфигурация СХД Fujitsu ETERNUS DX100 + 12 Nearline SAS 1Tb SFF (RAID10) СХД Fujitsu ETERNUS DX100 + 12 Nearline SAS 1Tb SFF (RAID10) + Supermicro Twin Наш сценарий 1: хранилище на базе CEPH Наш сценарий 2: построение частного облака Нашсценарий 3: построение сверхдешевого хранилища
Полезный обьем, ГБ 6 000 6 000 6 000 6000 8 000
Цена, USD 21000 36000 15 770 20 592 7 324
Стоимость 1 ГБ, USD 3,5 6 2,63 3,43 0,92
Количество IOPs* (чтение 70%/запись 30%, Размер блока 4К) 760 760 700 700 675
Назначение Хранилище Хранилище + Вычисление Хранилище + Вычисление Хранилище + Вычисление Хранилище + Вычисление

*Расчет количества IOPs выполнен для созданных массивов из дисков NL SAS на СХД и дисков SATA на сторедже CEPH, кэширование отключалось для чистоты полученных значений. При использовании кэширования показатели IOPs будут значительно выше до момента заполнения кэша.

В итоге можно сказать, что на основе кластера CEPH можно строить надежные и дешевые хранилища данных. Как показали расчеты, использовать ноды кластера только для хранения не очень эффективно – решение выходит дешевле чем закупить СХД, но не на много – в нашем примере стоимость хранилища на CEPH была примерно на 25% меньше чем Fujitsu DX100. По-настоящему экономия ощущается в результате совмещения вычислительной части и хранилища на одном оборудовании - в таком случае стоимость решения будет в 1,8 раз меньше, чем при построении классической структуры с применением выделенного хранилища и отдельных хост-машин.

Компания EFSOL реализует данное решение по индивидуальным требованиям. Мы можем использовать имеющееся у вас оборудование, что ещё более снизит капитальные затраты на внедрение системы. Свяжитесь с нами и мы проведем обследование вашего оборудования на предмет его использования при создании СХД.

– это аппаратно-программное решение для надежного хранения данных и предоставление быстрого и надежного доступа к ним.

Реализация аппаратного обеспечения в системах хранения данных (СХД) схоже с реализацией архитектуры персонального компьютера. Зачем же тогда вообще применять СХД в архитектуре локальной сети организации, почему нельзя обеспечить, внедрить СХД на базе обычного ПК?

СХД как дополнительный узел локальной сети на базе персоналки или даже мощного сервера существуют уже давно.

Простейшее предоставление доступа к данным по протоколам FTP (протокол передачи фалов) и SMB (протокол удаленного доступа к сетевым ресурсам) поддержка которых есть во всех современных операционных системах.

Почему же тогда вообще появились СХД ?

Все просто , появление СХД связано с отставанием в развитии и скорости работы постоянно запоминающих устройств (жестких магнитных дисков) от центрального процессора и оперативной памяти. Самым узким местом в архитектуре ПК до сих пор считается жесткий диск, даже не смотря на мощное развитие SATA (последовательного интерфейса) до скорости обмена в 600 Мбайт/с (SATA3 ), физическое устройство накопителя представляет собой пластину, доступ к данным на которой нужно получить с помощью считывающих головок, что очень медленно. Последние недостатки на текущий момент решены накопителями SSD (не механическое запоминающее устройство), построенных на основе микросхем памяти. Кроме высокой цены на SSD у них есть, на мой взгляд, на текущий момент времени, недостаток в надежности. Инженеры СХД предложили вытеснить устройства хранения в отдельный элемент, а оперативную память таких устройств использовать для хранения часто меняющихся данных по специальным алгоритмам, для чего понадобилась программная составляющая продукта. В итоге системы хранения данных работают быстрее, чем накопители на жестких дисках в серверах, а вынос устройства хранения (дисковой подсистемы в отдельный элемент) повлияло на надежность и централизацию системы в целом.

Надежность обеспечил факт реализации в отдельном устройстве дисковой системы, которая работая с программной составляющей, выполняет одну функцию – это операции ввода/вывода и хранения данных.

Кроме простого принципа – одно устройство, одна функция обеспечивающее надежность. Все основные узлы: блоки питания, контроллеры системы хранения данных дублируют, что конечно еще больше увеличивает надежность системы, но сказывается на цене конечного продукта.

Вынос дисковой системы в отдельный узел позволяет централизовать устройства хранения . Как правило, без отдельного сетевого хранилища, домашние папки пользователей, почта, базы данных хранятся на отдельных узлах, как правило, серверах в сети, что очень неудобно, не надежно. Приходится делать резервные копии, дублировать данные на резервный сервер в сети, что кроме расходов на поддержку и аппаратуру, программное обеспечение, занимает часть пропускной способности сети.

Вот как это выглядит:

С отдельным СХД:

В зависимости от способа, технологии подключения СХД в информационную сеть. СХД подразделяют на: DAS, NAS, SAN

DAS (Direct Attached Storage) – способ подключения, который ничем не отличается от стандартного подключения жесткого диска, массивов дисков (RAID) к серверу или ПК. Как правило, для подключения используется SAS .

SAS – фактически, протокол рассчитанный на замену SCSI, использует последовательный интерфейс в отличии от SCSI, но команды используются те же самые, что и в SCSI. SAS имеет большую пропускную способность благодаря канальным соединениям в одном интерфейсе.

NAS (Network Attached Storage) – дисковая система подключается к общей LAN сети, используется транспортный протокол TCP, поверх модели работают протоколы SMB, NFS (удаленный доступ к файлам и принтерам).

SAN (Storage Area Network) – это выделенная сеть объединяющая устройства хранения с серверами. Работает с использованием протокола Fibre Channel либо iSCSI .

С Fibre Channel все понятно – оптика. А вот iSCSI – инкапсуляция пакетов в протокол IP, позволяет создавать сети хранения данных на основе Ethernet инфраструктуры, скорость передачи 1Gb и 10GB. Скорости работы iSCSI по мнению разработчиков должно хватать почти для всех бизнес приложений. Для подключения сервера к СХД по iSCSI требуются адаптеры с поддержкой iSCSI . До каждого устройства при использовании iSCSI прокладывают как минимум два маршрута, применяя VLAN , каждому устройству и LUN (определяет виртуальный раздел в массиве, используется при адресации) присваивается адрес (World Wide Name ).

Отличие NAS от SAN в том, что в сети SAN при операциях ввода/вывода данные считываются и записываются блоками. СХД не имеет никакого представления об устройстве файловых систем.

Из наиболее брендовых вендоров на рынке устройств хранения можно выделить: NetApp, IBM, HP, DELL, HITACHI, EMC.

Для нашего проекта требуется система хранения данных со следующими характеристиками:

  • Объем 1Тб для файлов, 1Тб для операционных систем серверов и баз данных, 300 – 500 Гб, для резервных серверов + запас. Итого минимум 3Тб дискового пространства
  • Поддержка протоколов SMB и NFS, для раздачи общих файлов для пользователей без участия серверов
  • Если хотим загрузку гипервизора с СХД , нужен как минимум протокол iSCSI
  • По идее еще нужно учитывать такой важный параметр как скорость ввода вывода (IO) который сможет обеспечить СХД. Прикинуть это параметр можно измерением IO на действующем железе, например программой IOMeter.

Нужно учитывать, что кластеризация от Microsoft работает только через Fibre Channel.

Вот список фирм и железок для выбора:

Asustor

Asustor AS 606T , AS 608T , 609 RD (кроме возможности установки до 8-ми дисков емкостью 4Tb заявлена поддержка VMware, Citrix и Hyper-V.

Аппаратная составляющая

CPU Intel Atom 2.13

RAM 1GB (3GB) DDR3

Hard 2.5, 3.5, SATA 3 or SSD

Lan Gigabit Ethernet – 2

ЖК-Экран, HDMI

Сеть

Сетевые протоколы

Файловая система

Для встроенных жестких дисков: EXT4, Для внешних жестких дисков: FAT32, NTFS, EXT3, EXT4, HFS+

Хранение

Поддержка нескольких томов с резервными дисками

Тип тома: Single disk, JBOD, RAID 0, RAID 1, RAID 5, RAID 6, RAID 10

Поддержка онлайн-миграции уровней RAID-массива

Максимальное число целей: 256

Максимальное число LUN: 256

Маскирование целей

Отображение LUN

Монтирование ISO-образов

Поддержка MPIO и MCS

Постоянное резервирование (SCSI-3)

Управление дисками

Поиск поврежденных блоков по графику

Сканирование S.M.A.R.T по графику

Поддерживаемые ОС

Windows XP, Vista, 7, 8, Server 2003, Server 2008, Server 2012

Mac OS X 10.6 Onwards

UNIX, Linux, and BSD

Резервное копирование

Поддержка режима Rsync (удаленной синхронизации)

Резервное копирование в «облако»

Резервное копирование по FTP

Резирвирование на внешние носители

Резервное копирование одним касанием

Системное администрирование

Тип журнала регистрации: системный журнал, журнал подключений, журнал доступа к файлам

Регистратор действий пользователя в реальном времени

Системный монитор реального времени

Сетевая корзина

Дисковая квота пользователей

Виртуальный диск (монтирование образов ISO, макс. 16)

Поддержка ИБП

Управление доступом

Максимальное число пользователей: 4096

Максимальное число групп: 512

Максимальное число папок общего доступа: 512

Максимальное число одновременных подключений: 512

Поддержка Windows Active Directory

Безопасность

Брандмауэр: предотвращение несанкционированного доступа

Сетевой фильтр: предотвращение сетевых атак

Уведомления об угрозах: E-mail, SMS

Защищенные подключения: HTTPS, FTP через SSL/TLS, SSH, SFTP, Rsync через SSH

Операционная система ADM с возможностью подключения дополнительных модулей через app central

Модели AS 604RD , AS 609RD в отличие от AS 606T , AS 608T , не имеют в своем составе ЖК-дисплея, предназначены для установки в стойку и имеют резервный блок питания, заявлена поддержка платформ виртуализации

Netgear

Ready Nas 2100 , Ready Nas 3100 , Ready Nas Pro 6

Аппаратная составляющая

CPU Intel SOC 1ГГц

Hard 2.5, 3.5, SATA 2 or SSD

Lan Gigabit Ethernet – 2

Сеть

Сетевые протоколы

CIFS/SMB, AFP, NFS, FTP, WebDAV, Rsync, SSH, SFTP, iSCSI, HTTP, HTTPS

Файловая система

Для встроенных жестких дисков: BTRFS, Для внешних жестких дисков: FAT32, NTFS, EXT3, EXT4, HFS+

Хранение

Поддержка онлайн-расширения емкости RAID-массива

Максимальное число целей: 256

Максимальное число LUN: 256

Маскирование целей

Отображение LUN

Управление дисками

Ёмкость диска, производительность, мониторинг загрузки

Сканирование для поиска плохих блоков на дисках

Поддержка HDD S.M.A.R.T.

Он-лайн коррекция данных на дисках

Поддержка режима Disk Scrubbing

Поддержка дефрагментации

Сообщения (от сервиса SMTP через e-mail, SNMP, syslog, локальный журнал)

Автоматическое выключение (HDD, вентиляторов, ИБП)

Восстановление работоспособности при возобновлении питания

Поддерживаемые ОС

Microsoft Windows Vista (32/64-bit), 7 (32/64-bit), 8 (32/64-bit), Microsoft Windows Server 2008 R2/2012, Apple OS X, Linux/Unix, Solaris, Apple iOS, Google Android)

Резервное копирование

Неограниченное число snapshot для непрерывной защиты.

Восстановление снимков в любой момент времени. Через графический интерфейс пользователя (консоль администратора), ReadyCLOUD, или проводник Windows

Возможность создания snapshot вручную или через планировщик

Синхронизация файлов через R-sync

Облачное управление Remote Replication(ReadyNAS to ReadyNAS). Не требует лицензий для устройств работающих под oперационной системой Radiator OS v6.

Резервирование в “горячем” режиме

Поддержка eSATA

Поддержка резервного копирования на внешние диски to e (USB/eSATA)

Поддержка технологии Remote Apple Time Machine backup and restore (через ReadyNAS Remote)

Поддержка сервиса ReadyNAS Vault Cloud (опционально)

Поддержка синхронизации через ReadyDROP (синхронизация файлов Mac/Windows на ReadyNAS)

Поддержка сервиса DropBox для файловой синхронизации (требуется учётная запись на сервисе DropBox)

Системное администрирование

ReadyCLOUD для обнаружения и управления устройствами

RAIDar –агент для обнаружения устройств в сетиt (Windows/Mac)

Сохранение и восстановление файла конфигураций

Журнал событий

Поддержка сообщений для сервера syslog

Поддержка сообщений для SMB

Графический интерфейс пользователя на русском и английском языках

Genie+ marketplace. Встроенный магазин приложений для повышения функциональности устройства

Поддержка Unicode- символов

Дисковый менеджер

Поддержка Thin provision Shares and LUNs

Мгновенное выделение ресурсов

Управление доступом

Максимальное число пользователей: 8192

Максимальное число групп: 8192

Максимальное количество папок предоставляемых для сетевого доступа: 1024

Максимальное количество подключение: 1024

Доступ к папкам и файлам на основе ACL

Расширенные разрешения для папок и подпапок на основе ACL для CIFS / SMB, AFP, FTP, Microsoft Active Directory (AD) Domain Controller Authentication

Собственные списки доступа

Списки доступа ReadyCLOUD на основе ACL

Операционная система

ReadyNAS OS 6 базируется на Linux 3.x

Ready Nas 3100 отличает Ready Nas 2100 объемом памяти 2Гб ECC

Ready Nas Pro 6 – хранилище с шестью слотами, процессор Intel Atom D510, память DDR2 1Гбайт

Qnap

TS-869U-RP , TS-869 PRO

Аппаратная составляющая

CPU Intel Atom 2.13ГГц

Hard 2.5, 3.5, SATA 3 or SSD

Lan Gigabit Ethernet – 2

Сеть

IPv4, IPv6, Supports 802.3ad and Six Other Modes for Load Balancing and/or Network Failover, Vlan

Сетевые протоколы

CIFS/SMB, AFP, NFS, FTP, WebDAV, Rsync, SSH, SFTP, iSCSI, HTTP, HTTPS

Файловая система

Для встроенных жестких дисков: EXT3, EXT4, Для внешних жестких дисков: FAT32, NTFS, EXT3, EXT4, HFS+

Хранение

Тип тома: RAID 0, RAID 1, RAID 5, RAID 6, RAID 10

Поддержка онлайн-расширения емкости RAID-массива

Максимальное число целей: 256

Максимальное число LUN: 256

Маскирование целей

Отображение LUN

Инициатор iSCSI (Виртуальный диск)

Stack Chaining Master

До 8 виртуальных дисков

Управление дисками

Увеличение емкости дискового пространства RAID-массива без потери данных

Сканирование на сбойные блоки

Функция восстановления RAID-массива

Поддержка Bitmap

Поддерживаемые ОС

Резервное копирование

Репликация в реальном времени (RTRR)

Работает как в качестве RTRR сервера, так и клиента

Поддерживает резервное копирование в реальном времени и по расписанию

Возможны фильтрация файлов, сжатие и шифрование

Кнопка копирования данных с/на внешнее устройство

Поддержка Apple Time Machine с управлением резервирования

Репликация ресурсов на уровне блоков (Rsync)

Работает как в качестве сервера, так и клиента

Защищенная репликация между серверами QNAP

Резервное копирование на внешние носители

Резервное копирование на облачные системы хранения данных

Приложение NetBak Replicator для Windows

Поддержка Apple Time Machine

Системное администрирование

Веб-интерфейс на технологии AJAX

Подключение по HTTP/ HTTPS

Мгновенные уведомления по E-mail и SMS

Управление системой охлаждения

DynDNS и специализированный сервис MyCloudNAS

Поддержка ИБП с SNMP-управлением (USB)

Поддержка сетевых ИБП

Монитор ресурсов

Сетевая корзина для CIFS/ SMB и AFP

Подробные журналы событий и подключений

Список активных пользователей

Клиент Syslog

Обновление микропрограммы

Сохранение и восстановление системных настроек

Восстановление заводских настроек

Управление доступом

До 4096 учетных записей пользователей

До 512 групп пользователей

До 512 сетевых ресурсов

Пакетное добавление пользователей

Импорт/экспорт пользователей

Задание параметров квотирования

Управление правами доступа на вложенные папки

Операционная система

TS – 869 Pro – модель без резервного блока питания, объем памяти 1Гб

Synology

RS 2212 , DS1813

Аппаратная составляющая

CPU Intel Core 2.13ГГц

Hard 2.5, 3.5, SATA 2 or SSD

Lan Gigabit Ethernet – 2

Сеть

IPv4, IPv6, Supports 802.3ad and Six Other Modes for Load Balancing and/or Network Failover

Сетевые протоколы

CIFS/SMB, AFP, NFS, FTP, WebDAV, SSH

Файловая система

Для встроенных жестких дисков: EXT3, EXT4, Для внешних жестких дисков: NTFS, EXT3, EXT4

Хранение

Тип тома: RAID 0, RAID 1, RAID 5, RAID 6, RAID 10

Максимальное число целей: 512

Максимальное число LUN: 256

Управление дисками

Изменение уровня RAID без остановки работы системы

Поддерживаемые ОС

Windows 2000 и последующие версии, Mac OS X 10.3 и последующие версии, Ubuntu 9.04 и последующие версии

Резервное копирование

Сетевое резервирование

Локальное резервирование

Синхронизация папок общего доступа

Резервирование рабочего стола

Системное администрирование

Уведомление о событиях системы по SMS, E-mail

Пользовательская квота

Мониторинг ресурсов

Управление доступом

До 2048 учетных записей пользователей

До 256 групп пользователей

До 256 сетевых ресурсов

Операционная система

DS1813 – 2 Гб оперативной памяти, 4 Gigabit, поддержка HASP 1C, поддержка дисков 4Тб

Thecus

N8800PRO v2 , N7700PRO v2 , N8900

Аппаратная составляющая

CPU Intel Core 2 1.66ГГц

Lan Gigabit Ethernet – 2

Возможность LAN 10Гб

Сеть

IPv4, IPv6, Supports 802.3ad and Six Other Modes for Load Balancing and/or Network Failover

Сетевые протоколы

CIFS/SMB, NFS, FTP

Файловая система

Для встроенных жестких дисков: EXT3, EXT4, Для внешних жестких дисков: EXT3, EXT4, XFS

Хранение

Тип тома: RAID 0, RAID 1, RAID 5, RAID 6, RAID 10, RAID 50, RAID 60

Поддержка онлайн-расширения емкости RAID-массива

Маскирование целей

Отображение LUN

Управление дисками

Контроль состояния дисков (S.M.A.R.T)

Сканирование на сбойные блоки

Возможность монтирования ISO-образов

Поддерживаемые ОС

Microsoft Windows 2000, XP, Vista (32/ 64 bit), Windows 7 (32/ 64 bit), Server 2003/ 2008

Резервное копирование

Acronis True Image

Утилита резервного копирования от Thecus

Чтение с оптического диска на Nas

Системное администрирование

Серверный веб-интерфейс администрирования

Управление доступом

Поддержка ADS

Операционная система

N7700PRO v2 – модель без резервного блока питания

N8900 новая модель с поддержкой SATA 3 и SAS

Исходя из данных выше, в необходимости не менее 3-x Tb на текущий момент, а при обновлении ОС и программ эту цифру можно умножить на два, то нужно дисковое хранилище с емкостью не менее 6Tb , и с возможностью роста. Поэтому с закладкой на будущее и организации массива RAID 5 итоговой цифрой является необходимость в 12 Tb . При поддержке дисковой системы жестких дисков емкостью 4Tb, нужна система с не менее шестью отсеками для дисков.

Выбор был существенно уменьшен следующими моделями: AS 609RD , Ready NAS 3200 , TS-869U-RP , RS-1212RP+ , N8900 . Все модели имеют в своем составе дополнительный блок питания . И заявленную производителем поддержку известных платформ виртуализации . Наиболее интересной показалась модель от NetGear - Ready NAS 3200 , так как только эта модель кроме SMART поддерживала хоть какие та дополнительные технологии для работы с дисками кроме SMART и память с ECC, но цена вылетала за 100 000 руб, к тому же были сомнения по поводу возможности работы в ней дисков 4Tb и SATA3. Цена за RS-1212RP+ , тоже вылетала выше 100 тысяч. AS 609RD – игрок на рынке систем хранения очень новый, поэтому не известно как поведет себя эта СХД .

Из чего оставалось только две системы на выбор : TS-869 U- RP , N8900 .

TS-869U-RP – на текущий момент стоит порядка 88 000 руб.

N8900 – цена 95 400 руб, имеет массу преимуществ в сравнении с TS-869U-RP – это поддержка как дисков SATA так и SAS , возможность дополнительной установки адаптера 10 Gb , более мощный двуядерный процессор, поддержка дисков SATA3 4Tb. Кроме того существует резервирование прошивки на резервную микросхему, что дает более выгодную надежность по сравнению с другими системами.

  • Назад

Shkera

В простейшем случае SAN состоит из СХД , коммутаторов и серверов, объединённых оптическими каналами связи. Помимо непосредственно дисковых СХД в SAN можно подключить дисковые библиотеки, ленточные библиотеки (стримеры), устройства для хранения данных на оптических дисках (CD/DVD и прочие) и др.

Пример высоконадёжной инфраструктуры, в которой серверы включены одновременно в локальную сеть (слева) и в сеть хранения данных (справа). Такая схема обеспечивает доступ к данным, находящимся на СХД, при выходе из строя любого процессорного модуля, коммутатора или пути доступа.

Использование SAN позволяет обеспечить:

  • централизованное управление ресурсами серверов и систем хранения данных ;
  • подключение новых дисковых массивов и серверов без остановки работы всей системы хранения;
  • использование ранее приобретенного оборудования совместно с новыми устройствами хранения данных;
  • оперативный и надежный доступ к накопителям данных, находящимся на большом расстоянии от серверов, *без значительных потерь производительности;
  • ускорение процесса резервного копирования и восстановления данных - BURA .

История

Развитие сетевых технологий привело к появлению двух сетевых решений для СХД – сетей хранения Storage Area Network (SAN) для обмена данными на уровне блоков, поддерживаемых клиентскими файловыми системами, и серверов для хранения данных на файловом уровне Network Attached Storage (NAS). Чтобы отличать традиционные СХД от сетевых был предложен еще один ретроним – Direct Attached Storage (DAS).

Появлявшиеся на рынке последовательно DAS, SAN и NAS отражают эволюционирующие цепочки связей между приложениями, использующими данные, и байтами на носителе, содержащим эти данные. Когда-то сами программы-приложения читали и писали блоки, затем появились драйверы как часть операционной системы. В современных DAS, SAN и NAS цепочка состоит из трех звеньев: первое звено – создание RAID-массивов, второе – обработка метаданных, позволяющих интерпретировать двоичные данные в виде файлов и записей, и третье – сервисы по предоставлению данных приложению. Они различаются по тому, где и как реализованы эти звенья. В случае с DAS СХД является «голой», она только лишь предоставляет возможность хранения и доступа к данным, а все остальное делается на стороне сервера, начиная с интерфейсов и драйвера. С появлением SAN обеспечение RAID переносится на сторону СХД, все остальное остается так же, как в случае с DAS. А NAS отличается тем, что в СХД переносятся к тому же и метаданные для обеспечения файлового доступа, здесь клиенту остается только лишь поддерживать сервисы данных.

Появление SAN стало возможным после того, как в 1988 году был разработан протокол Fibre Channel (FC) и в 1994 утвержден ANSI как стандарт. Термин Storage Area Network датируется 1999 годом. Со временем FC уступил место Ethernet, и получили распространение сети IP-SAN с подключением по iSCSI.

Идея сетевого сервера хранения NAS принадлежит Брайану Рэнделлу из Университета Ньюкэстла и реализована в машинах на UNIX-сервере в 1983 году. Эта идея оказалась настолько удачной, что была подхвачена множеством компаний, в том числе Novell, IBM , и Sun, но в конечном итоге сменили лидеров NetApp и EMC.

В 1995 Гарт Гибсон развил принципы NAS и создал объектные СХД (Object Storage, OBS). Он начал с того, что разделил все дисковые операции на две группы, в одну вошли выполняемые более часто, такие как чтение и запись, в другую более редкие, такие как операции с именами. Затем он предложил в дополнение к блокам и файлам еще один контейнер, он назвал его объектом.

OBS отличается новым типом интерфейса, его называют объектным. Клиентские сервисы данных взаимодействуют с метаданными по объектному API (Object API). В OBS хранятся не только данные, но еще и поддерживается RAID, хранятся метаданные, относящиеся к объектам и поддерживается объектный интерфейс. DAS, и SAN, и NAS, и OBS сосуществуют во времени, но каждый из типов доступа в большей мере соответствует определенному типу данных и приложений.

Архитектура SAN

Топология сети

SAN является высокоскоростной сетью передачи данных, предназначенной для подключения серверов к устройствам хранения данных. Разнообразные топологии SAN (точка-точка, петля с арбитражной логикой (Arbitrated Loop) и коммутация) замещают традиционные шинные соединения «сервер - устройства хранения» и предоставляют по сравнению с ними большую гибкость, производительность и надежность. В основе концепции SAN лежит возможность соединения любого из серверов с любым устройством хранения данных, работающим по протоколу Fibre Channel . Принцип взаимодействия узлов в SAN c топологиями точка-точка или коммутацией показан на рисунках. В SAN с топологией Arbitrated Loop передача данных осуществляется последовательно от узла к узлу. Для того, чтобы начать передачу данных передающее устройство инициализирует арбитраж за право использования среды передачи данных (отсюда и название топологии – Arbitrated Loop).

Транспортную основу SAN составляет протокол Fibre Channel, использующий как медные, так и волоконно-оптические соединения устройств.

Компоненты SAN

Компоненты SAN подразделяются на следующие:

  • Ресурсы хранения данных;
  • Устройства, реализующие инфраструктуру SAN;

Host Bus Adaptors

Ресурсы хранения данных

К ресурсам хранения данных относятся дисковые массивы , ленточные накопители и библиотеки с интерфейсом Fibre Channel . Многие свои возможности ресурсы хранения реализуют только будучи включенными в SAN. Так дисковые массивы высшего класса могут осуществлять репликацию данных между масcивами по сетям Fibre Channel, а ленточные библиотеки могут реализовывать перенос данных на ленту прямо с дисковых массивов с интерфейсом Fibre Channel, минуя сеть и серверы (Serverless backup). Наибольшую популярность на рынке приобрели дисковые массивы компаний EMC , Hitachi , IBM , Compaq (семейство Storage Works , доставшееся Compaq от Digital), а из производителей ленточных библиотек следует упомянуть StorageTek , Quantum/ATL , IBM .

Устройства, реализующие инфраструктуру SAN

Устройствами, реализующими инфраструктуру SAN, являются коммутаторы Fibre Channel (Fibre Channel switches , FC switches),концентраторы (Fibre Channel Hub) и маршрутизаторы (Fibre Channel-SCSI routers).Концентраторы используются для объединения устройств, работающих в режиме Fibre Channel Arbitrated Loop (FC_AL). Применение концентраторов позволяет подключать и отключать устройства в петле без остановки системы, поскольку концентратор автоматически замыкает петлю в случае отключения устройства и автоматически размыкает петлю, если к нему было подключено новое устройство. Каждое изменение петли сопровождается сложным процессом её инициализации . Процесс инициализации многоступенчатый, и до его окончания обмен данными в петле невозможен.

Все современные SAN построены на коммутаторах, позволяющих реализовать полноценное сетевое соединение. Коммутаторы могут не только соединять устройства Fibre Channel , но и разграничивать доступ между устройствами, для чего на коммутаторах создаются так называемые зоны. Устройства, помещенные в разные зоны, не могут обмениваться информацией друг с другом. Количество портов в SAN можно увеличивать, соединяя коммутаторы друг с другом. Группа связанных коммутаторов носит название Fibre Channel Fabric или просто Fabric. Связи между коммутаторами называют Interswitch Links или сокращенно ISL.

Программное обеспечение

Программное обеспечение позволяет реализовать резервирование путей доступа серверов к дисковым массивам и динамическое распределение нагрузки между путями. Для большинства дисковых массивов существует простой способ определить, что порты, доступные через разные контроллеры , относятся к одному диску. Специализированное программное обеспечение поддерживает таблицу путей доступа к устройствам и обеспечивает отключение путей в случае аварии, динамическое подключение новых путей и распределение нагрузки между ними. Как правило, изготовители дисковых массивов предлагают специализированное программное обеспечение такого типа для своих массивов. Компания VERITAS Software производит программное обеспечение VERITAS Volume Manager , предназначенное для организации логических дисковых томов из физических дисков и обеспечивающее резервирование путей доступа к дискам, а также распределение нагрузки между ними для большинства известных дисковых массивов.

Используемые протоколы

В сетях хранения данных используются низкоуровневые протоколы:

  • Fibre Channel Protocol (FCP), транспорт SCSI через Fibre Channel. Наиболее часто используемый на данный момент протокол . Существует в вариантах 1 Gbit/s, 2 Gbit/s, 4 Gbit/s, 8 Gbit/s и 10 Gbit/s.
  • iSCSI , транспорт SCSI через TCP/IP .
  • FCoE , транспортировка FCP/SCSI поверх "чистого" Ethernet.
  • FCIP и iFCP , инкапсуляция и передача FCP/SCSI в пакетах IP.
  • HyperSCSI , транспорт SCSI через Ethernet .
  • FICON транспорт через Fibre Channel (используется только мейнфреймами).
  • ATA over Ethernet , транспорт ATA через Ethernet.
  • SCSI и/или TCP/IP транспорт через InfiniBand (IB).

Преимущества

  • Высокая надёжность доступа к данным, находящимся на внешних системах хранения. Независимость топологии SAN от используемых СХД и серверов.
  • Централизованное хранение данных (надёжность, безопасность).
  • Удобное централизованное управление коммутацией и данными.
  • Перенос интенсивного трафика ввода-вывода в отдельную сеть – разгрузка LAN.
  • Высокое быстродействие и низкая латентность.
  • Масштабируемость и гибкость логической структуры SAN
  • Географические размеры SAN, в отличие от классических DAS, практически не ограничены.
  • Возможность оперативно распределять ресурсы между серверами.
  • Возможность строить отказоустойчивые кластерные решения без дополнительных затрат на базе имеющейся SAN.
  • Простая схема резервного копирования – все данные находятся в одном месте.
  • Наличие дополнительных возможностей и сервисов (снапшоты, удаленная репликация).
  • Высокая степень безопасности SAN.

Совместное использование систем хранения как правило упрощает администрирование и добавляет изрядную гибкость, поскольку кабели и дисковые массивы не нужно физически транспортировать и перекоммутировать от одного сервера к другому.

Другим приемуществом является возможность загружать сервера прямо из сети хранения. При такой конфигурации можно быстро и легко заменить сбойный

Система хранения данных (СХД) представляет собой комплекс программных и аппаратных средств, созданных для управления и хранения больших объёмов информации. Основными носителями информации в данное время являются жёсткие диски, объёмы которых совсем недавно достигли 1 терабайта. Основным хранилищем информации в малых компаниях являются файловые серверы и серверы СУБД, данные которых хранятся на локальных жёстких дисках. В крупных компаниях объёмы информации могут достигать сотен терабайт, причём к ним выдвигаются ещё большие требования по скорости и надёжности. Никакие локально подключенные к серверам диски не могут удовлетворить этим потребностям. Именно поэтому крупные компании внедряют системы хранения данных (СХД).

Основными компонентами СХД являются: носители информации, системы управления данными и сети передачи данных.

  • Носители информации. Как уже было сказано выше, сейчас основными носителями информации являются жёсткие диски (возможно в ближайшем будущем будут заменены твердотельными электронными накопителями SSD). Жёсткие диски, подразделяются на 2 основных типа: надёжные и производительные SAS (Serial Attached SCSI) и более экономичные SATA. В системах резервного копирования также применяются ленточные накопители (стриммеры).
  • Системы управления данными. СХД предоставляет мощные функции по управлению данными. СХД обеспечивает функции зеркалирования и репликации данных между системами, поддерживает отказоустойчивые, самовосстанавливающиеся массивы, предоставляет функции мониторинга, а также функции резервного копирования на аппаратном уровне.
  • Сети передачи данных. Сети передачи данных предоставляют среду, по которой осуществляется связь между серверами и СХД или связь одной СХД с другой. Жёсткие диски разделяют по типу подключения: DAS (Direct Attached Storage) - непосредственно подключенные к серверу диски, NAS (Network Attached Storage) – диски, подключенные по сети (доступ к данным осуществляется на уровне файлов, обычно по FTP, NFS или SMB) и SAN (Storage Area Network) – сети хранения данных (предоставляют блочный доступ). В крупных системах хранения данных основным типом подключения является SAN. Существует 2 метода построения SAN на основе Fibre Channel и iSCSI. Fibre Channel (FC) в основном применяется для соединения внутри одного центра обработки данных. А iSCSI представляет собой протокол передачи SCSI команд поверх IP, которые могут маршрутизироваться обычными IP маршрутизаторами. iSCSI позволяет строить гео-распределённые кластеры.

Решение СХД на базе массивов HP и коммутаторов CISCO, объём данных свыше 1 ПБ (1 петабайт).

Основными производителями устройств, применяемых для построения СХД, являются HP, IBM, EMC, Dell, Sun Microsystems и NetApp. Cisco Systems предлагает широкий выбор Fibre Channel коммутаторов, обеспечивающих связь между устройствами СХД.

Компания ЛанКей имеет большой опыт построения систем хранения данных на базе оборудования перечисленных выше производителей. При построении СХД мы сотрудничаем с производителями и строим высокопроизводительные и высоконадёжные системы хранения информации. Наши инженеры спроектируют и внедрят СХД, соответствующую специфике вашего бизнеса, а также разработают систему управления вашими данными.