Большие объемы данных big data. Big Data: аналитика и решения

Вы же знаете эту известную шутку? Big Data — это как секс до 18:

  • все об этом думают;
  • все об этом говорят;
  • все думают, что их друзья это делают;
  • почти никто этого не делает;
  • тот, кто это делает, делает это плохо;
  • все думают, что в следующий раз лучше получится;
  • никто не принимает мер безопасности;
  • любому стыдно признаться в том, что он чего-то не знает;
  • если у кого-то что-то получается, от этого всегда много шума.

Но давайте начистоту, с любой шумихой рядом всегда будет идти обычное любопытство: что за сыр-бор и есть ли там что-то действительно важное? Если коротко — да, есть. Подробности — ниже. Мы отобрали для вас самые удивительные и интересные применения технологий Big Data. Это небольшое исследование рынка на понятных примерах сталкивает с простым фактом: будущее не наступает, не нужно «подождать еще n лет и волшебство станет реальностью». Нет, оно уже пришло, но все еще незаметно глазу и поэтому припекание сингулярности еще не обжигает известную точку рынка труда так сильно. Поехали.

1 Как применяются технологии Big Data там, где они зародились

Большие IT компании — то место, где зародилась наука о данных, поэтому их внутренняя кухня в этой области интереснее всего. Кампания Google, родина парадигмы Map Reduce, , единственной целью которого является обучение своих программистов технологиям машинного обучения. И в этом кроется их конкурентное преимущество: после получения новых знаний, сотрудники будут внедрять новые методы в тех проектах Google, где они постоянно работают. Представьте себе, насколько огромен список сфер, в которых кампания может совершить революцию. Один из примеров: нейронные сети используются .

Корпорация и внедряет машинное обучение во все свои продукты. Ее преимущество — наличие большой экосистемы, в которую входят все цифровые устройства, используемые в повседневной жизни. Это позволяет Apple достигать невозможного уровня: у кампании есть столько данных о пользователях, сколько нет ни у какой-либо другой. При этом, политика конфиденциальности очень строгая: корпорация всегда хвасталась тем, что не использует данных клиентов в рекламных целях. Соответственно, информация пользователей шифруется так, что юристы Apple или даже ФБР с ордером не смогут ее прочесть. По вы найдете большой обзор разработок Apple в сфере ИИ.

2 Большие Данные на 4 колесах

Современный автомобиль — накопитель информации: он аккумулирует все данные о водителе, окружающей среде, подключенных устройствах и о себе самом. Уже скоро одно транспортное средство, которое подключено к сети наподобие той, что , будет генерировать до 25 Гб данных за час.

Транспортная телематика используется автопроизводителями на протяжении многих лет, но сейчас лоббируется более сложный метод сбора данных, который в полной мере задействует Big Data. А это значит, что теперь технологии могут оповестить водителя о плохих дорожных условиях путем автоматической активации антиблокировочной тормозной и пробуксовочной системы.

Другие концерны, включая BMW, используют технологии Большиx Данных в сочетании со сведениями, собранными с тестируемых прототипов, встроенной в автомобили системой «памяти ошибок» и клиентскими жалобами, чтобы на ранней стадии производства определить слабые места модели. Теперь вместо ручной оценки данных, которая занимает месяцы, применяется современный алгоритм. Ошибки и затраты на их устранение уменьшаются, что позволяет ускорить рабочие процессы анализа информации в BMW.

Согласно экспертным оценкам, к 2019 году оборот рынка подключенных в единую сеть автомобили, достигнет $130 млрд. Это неудивительно, если учитывать темпы интеграции автопроизводителями технологий, которые являются неотъемлемой частью транспортного средства.

Использование Больших Данных помогает сделать машину более безопасной и функциональной. Так, компания Toyota путем встраивания информационных коммуникационных модулей (DCM) . Этот инструмент, использующийся для Больших Данных, обрабатывает и анализирует данные, собранные DCM, чтобы в дальнейшем извлекать из них пользу.

3 Применение Больших Данных в медицине


Реализация технологий Big Data в медицинской сфере позволяет врачам более тщательно изучить болезнь и выбрать эффективный курс лечения для конкретного случая. Благодаря анализу информации, медработникам становится легче предсказывать рецидивы и предпринимать превентивные меры. Как результат — более точная постановка диагноза и усовершенствованные методы лечения.

Новая методика позволила взглянуть на проблемы пациентов с другой стороны, что привело к открытию ранее неизвестных источников проблемы. Например, некоторые расы генетически более предрасположены к заболеваниям сердца, нежели представители других этнических групп. Теперь, когда пациент жалуется на определенное заболевание, врачи берут во внимание данные о представителях его расы, которые жаловались на такую же проблему. Сбор и анализ данных позволяет узнавать о больных намного больше: от предпочтений в еде и стиля жизни до генетической структуры ДНК и метаболитах клеток, тканей, органов. Так, Центр детской Геномной медицины в Канзас-Сити использует пациентов и анализа мутаций генетического кода, которые вызывают рак. Индивидуальный подход к каждому пациенту с учетом его ДНК поднимет эффективность лечения на качественно иной уровень.

С понимания того, как используются Большие Данные, вытекает первое и очень важное изменение в медицинской сфере. Когда пациент проходит курс лечения, больница или другое здравоохранительное учреждение может получить много значимой информации о человеке. Собранные сведения используются для прогнозирования рецидивов заболеваний с определенной степенью точности. Например, если пациент перенес инсульт, врачи изучают сведения о времени нарушения мозгового кровообращения, анализируют промежуточный период между предыдущими прецедентами (в случае возникновения таковых), обращая особое внимание на стрессовые ситуации и тяжелые физические нагрузки в жизни больного. На основании этих данных, больницы выдают пациенту четкий план действий, чтобы предотвратить возможность инсульта в будущем.

Свою роль играют и носимые устройства, которые помогают выявлять проблемы со здоровьем, даже если у человека нет явных симптомов той или иной болезни. Вместо того чтобы оценивать состояние пациента путем длительного курса обследований, врач может делать выводы на основании собранной фитнес-трекером или «умными» часами информации.

Один из последних примеров — . В то время как пациент проходил обследование из-за нового приступа судороги, вызванного пропущенным приемом лекарств, врачи обнаружили, что мужчина имеет куда более серьезную проблему со здоровьем. Этой проблемой оказалась фибрилляция предсердий. Диагноз удалось поставить благодаря тому, что сотрудники отделения получили доступ к телефону пациента, а именно к приложению, сопряженному с его фитнес-трекером. Данные с приложения оказались ключевым фактором в определении диагноза, ведь на момент обследования у мужчины никаких сердечных отклонений обнаружено не было.

Это лишь один из немногих случаев, который показывает, почему использование Больших Данных в медицинской сфере сегодня играет столь значимую роль.

4 Анализ данных уже стал стержнем розничной торговли

Понимание пользовательских запросов и таргетинг — одна из самых больших и максимально освещенных широкой публике областей применения инструментов Big Data. Большие Данные помогают анализировать клиентские привычки, чтобы в дальнейшем лучше понимать запросы потребителей. Компании стремятся расширить традиционный набор данных информацией из социальных сетей и историей поиска браузера с целью формирования максимально полной клиентской картины. Иногда крупные организации в качестве глобальной цели выбирают создание собственной предсказательной модели.

Например, сети магазинов Target с помощью глубинного анализа данных и собственной системы прогнозирования удается с высокой точностью определить — . За каждым клиентом закрепляется ID, который в свою очередь привязан к кредитке, имени или электронной почте. Идентификатор служит своеобразной корзиной покупок, где хранится информация обо всем, что когда-либо человек приобрел. Специалистами сети установлено, что женщины в положении активно приобретают неароматизированные средства перед вторым триместром беременности, а в течение первых 20 недель налегают на кальциевые, цинковые и магниевые добавки. На основании полученных данных Target отправляет купоны на детские товары клиентам. Сами же скидки на товары для детей «разбавляются» купонами на другие продукты, чтобы предложения купить кроватку или пеленки не выглядели слишком навязчивыми.

Даже правительственные ведомства нашли способ, как использовать технологии Big Data для оптимизации избирательных кампаний. Некоторые считают, что победа Б. Обамы на президентских выборах США в 2012 году обусловлена превосходной работой его команды аналитиков, которые обрабатывали огромные массивы данных в правильном ключе.

5 Большие Данные на страже закона и порядка


За последние несколько лет правоохранительным структурам удалось выяснить, как и когда использовать Большие Данные. Общеизвестным фактом является то, что Агентство национальной безопасности применяет технологии Больших Данных, чтобы предотвратить террористические акты. Другие ведомства задействуют прогрессивную методологию, чтобы предотвращать более мелкие преступления.

Департамент полиции Лос-Анджелеса применяет . Она занимается тем, что обычно называют проактивной охраной правопорядка. Используя отчеты о преступлениях за определенный период времени, алгоритм определяет районы, где вероятность совершения правонарушений является наибольшей. Система отмечает такие участки на карте города небольшими красными квадратами и эти данные тут же передаются в патрульные машины.

Копы Чикаго используют технологии Больших Данных немного другим образом. У блюстителей правопорядка из Города ветров также , но он направлен на очерчивание «круга риска», состоящего из людей, которые могут оказаться жертвой или участником вооруженного нападения. По информации газеты The New York Times, данный алгоритм присваивает человеку оценку уязвимости на основании его криминального прошлого (аресты и участие в перестрелках, принадлежность к преступным группировкам). Разработчик системы уверяет, что в то время как система изучает криминальное прошлое личности, она не учитывает второстепенных факторов вроде расы, пола, этнической принадлежности и месторасположения человека.

6 Как технологии Big Data помогают развиваться городам


Генеральный директор Veniam Жоао Баррос демонстрирует карту отслеживания Wi-Fi-роутеров в автобусах города Порту

Анализ данных также применяется для улучшения ряда аспектов жизнедеятельности городов и стран. Например, зная точно, как и когда использовать технологии Big Data, можно оптимизировать потоки транспорта. Для этого берется в расчет передвижение автомобилей в режиме онлайн, анализируются социальные медиа и метеорологические данные. Сегодня ряд городов взял курс на использование анализа данных с целью объединения транспортной инфраструктуры с другими видами коммунальных услуг в единое целое. Это концепция «умного» города, в котором автобусы ждут опаздывающий поезд, а светофоры способны прогнозировать загруженность на дорогах, чтобы минимизировать пробки.

На основе технологий Больших Данных в городе Лонг-Бич работают «умные» счетчики воды, которые используются для пресечения незаконного полива. Ранее они применялись с целью сокращения потребления воды частными домовладениями (максимальный результат — сокращение на 80%). Экономия пресной воды — вопрос актуальный всегда. Особенно, когда государство переживает самую сильную засуху, которая когда-либо была зафиксирована.

К перечню тех, кто использует Big Data, присоединились представители Департамента транспорта города Лос-Анджелеса. На основании данных, полученных от датчиков дорожных камер, власти производят контроль работы светофоров , что в свою очередь позволяет регулировать траффик. Под управлением компьютеризованной системы находится порядка 4 500 тысяч светофоров по всему городу. Согласно официальным данным, новый алгоритм помог уменьшить заторы на 16%.

7 Двигатель прогресса в сфере маркетинга и продаж


В маркетинге инструменты Big Data позволяют выявить, продвижение каких идей на том или ином этапе цикла продаж является наиболее эффективным. С помощью анализа данных определяется, как инвестиции способны улучшить систему управления взаимоотношениями с клиентами, какую стратегию следует выбрать для повышения коэффициента конверсии и как оптимизировать жизненный цикл клиента. В бизнесе, связанном с облачными технологиями, алгоритмы Больших Данных применяют для выяснения того, как минимизировать цену привлечения клиента и увеличить его жизненный цикл.

Дифференциация стратегий ценообразования в зависимости от внутрисистемного уровня клиента — это, пожалуй, главное, для чего Big Data используется в сфере маркетинга. Компания McKinsey выяснила , что около 75% доходов среднестатистической фирмы составляют базовые продукты, на 30% из которых устанавливаются некорректные цены. Увеличение цены на 1% приводит к росту операционной прибыли на 8,7%.

Исследовательской группе Forrester удалось определить , что анализ данных позволяет маркетологам сосредоточиться на том, как сделать отношения с клиентами более успешными. Исследуя направление развития клиентов, специалисты могут оценить уровень их лояльности, а также продлить жизненный цикл в контексте конкретной компании.

Оптимизация стратегий продаж и этапы выхода на новые рынки с использованием геоаналитики находят отображение в биофармацевтической промышленности. Согласно McKinsey , компании, занимающиеся производством медикаментов, тратят в среднем от 20 до 30% прибыли на администрирование и продажи. Если предприятия начнут активнее использовать Большие Данные , чтобы определить наиболее рентабельные и быстро растущие рынки, расходы будут немедленно сокращены.

Анализ данных — средство получения компаниями полного представления относительно ключевых аспектов их бизнеса. Увеличение доходов, снижение затрат и сокращение оборотного капитала являются теми тремя задачами, которые современный бизнес пытается решить с помощью аналитических инструментов.

Наконец, 58% директоров по маркетингу уверяют , что реализация технологий Big Data прослеживается в поисковой оптимизации (SEO), e-mail- и мобильном маркетинге, где анализ данных отыгрывает наиболее значимую роль в формировании маркетинговых программ. И лишь на 4% меньше респондентов уверены, что Большие Данные будут играть значимую роль во всех маркетинговых стратегиях на протяжении долгих лет.

8 Анализ данных в масштабах планеты

Не менее любопытно то, . Возможно, что именно машинное обучение в конечном счете будет единственной силой, способной поддерживать хрупкое равновесие. Тема влияния человека на глобальное потепление до сих пор вызывает много споров, поэтому только достоверные предсказательные модели на основе анализа большого объема данных могут дать точный ответ. В конечном счете, снижение выбросов поможет и нам всем: мы будем меньше тратиться на энергию.

Сейчас Big Data — это не абстрактное понятие, которое, может быть, найдет свое применение через пару лет. Это вполне рабочий набор технологий, способный принести пользу практически во всех сферах человеческой деятельности: от медицины и охраны общественного порядка до маркетинга и продаж. Этап активной интеграции Больших Данных в нашу повседневную жизнь только начался, и кто знает, какова будет роль Big Data уже через несколько лет?

Большие данные – это широкий термин для обозначения нетрадиционных стратегий и технологий, необходимых для сбора, упорядочивания и обработки информации из больших наборов данных. Хотя проблема работы с данными, превышающими вычислительную мощность или возможности хранения одного компьютера, не является новой, в последние годы масштабы и ценность этого типа вычислений значительно расширились.

В этой статье вы найдете основные понятия, с которыми вы можете столкнуться, исследуя большие данные. Также здесь рассматриваются некоторые из процессов и технологий, которые используются в этой области в настоящее время.

Что такое большие данные?

Точное определение «больших данных» трудно сформулировать, потому что проекты, вендоры, специалисты-практики и бизнес-специалисты используют его совершенно по-разному. Имея это в виду, большие данные можно определить как:

  • Большие наборы данных.
  • Категорию вычислительных стратегий и технологий, которые используются для обработки больших наборов данных.

В этом контексте «большой набор данных» означает набор данных, который слишком велик, чтобы обрабатываться или храниться с помощью традиционных инструментов или на одном компьютере. Это означает, что общий масштаб больших наборов данных постоянно меняется и может значительно варьироваться от случая к случаю.

Системы больших данных

Основные требования к работе с большими данными такие же, как и к любым другим наборам данных. Однако массовые масштабы, скорость обработки и характеристики данных, которые встречаются на каждом этапе процесса, представляют серьезные новые проблемы при разработке средств. Целью большинства систем больших данных является понимание и связь с большими объемами разнородных данных, что было бы невозможно при использовании обычных методов.

В 2001 году Даг Лэйни (Doug Laney) из Gartner представил «три V больших данных», чтобы описать некоторые характеристики, которые отличают обработку больших данных от процесса обработки данных других типов:

  1. Volume (объем данных).
  2. Velocity (скорость накопления и обработки данных).
  3. Variety (разнообразие типов обрабатываемых данных).

Объем данных

Исключительный масштаб обрабатываемой информации помогает определить системы больших данных. Эти наборы данных могут быть на порядки больше, чем традиционные наборы, что требует большего внимания на каждом этапе обработки и хранения.

Поскольку требования превышают возможности одного компьютера, часто возникает проблема объединения, распределения и координации ресурсов из групп компьютеров. Кластерное управление и алгоритмы, способные разбивать задачи на более мелкие части, становятся в этой области все более важными.

Скорость накопления и обработки

Вторая характеристика, которая существенно отличает большие данные от других систем данных, — это скорость, с которой информация перемещается по системе. Данные часто поступают в систему из нескольких источников и должны обрабатываться в режиме реального времени, чтобы обновить текущее состояние системы.

Этот акцент на мгновенной обратной связи заставил многих специалистов-практиков отказаться от пакетно-ориентированного подхода и отдать предпочтение потоковой системе реального времени. Данные постоянно добавляются, обрабатываются и анализируются, чтобы успевать за притоком новой информации и получать ценные данные на ранней стадии, когда это наиболее актуально. Для этого необходимы надежные системы с высокодоступными компонентами для защиты от сбоев по конвейеру данных.

Разнообразие типов обрабатываемых данных

В больших данных существует множество уникальных проблем, связанных с широким спектром обрабатываемых источников и их относительным качеством.

Данные могут поступать из внутренних систем, таких как логи приложений и серверов, из каналов социальных сетей и других внешних API-интерфейсов, с датчиков физических устройств и из других источников. Целью систем больших данных является обработка потенциально полезных данных независимо от происхождения путем объединения всей информации в единую систему.

Форматы и типы носителей также могут значительно различаться. Медиафайлы (изображения, видео и аудио) объединяются с текстовыми файлами, структурированными логами и т. д. Более традиционные системы обработки данных рассчитывают, что данные попадают в конвейер уже помеченными, отформатированными и организованными, но системы больших данных обычно принимают и сохраняют данные, стараясь сохранить их исходное состояние. В идеале любые преобразования или изменения необработанных данных будут происходить в памяти во время обработки.

Другие характеристики

Со временем специалисты и организации предложили расширить первоначальные «три V», хотя эти нововведения, как правило, описывают проблемы, а не характеристики больших данных.

  • Veracity (достоверность данных): разнообразие источников и сложность обработки могут привести к проблемам при оценке качества данных (и, следовательно, качества полученного анализа).
  • Variability (изменчивость данных): изменение данных приводит к широким изменениям качества. Для идентификации, обработки или фильтрации данных низкого качества могут потребоваться дополнительные ресурсы, которые смогут повысить качество данных.
  • Value (ценность данных): конечная задача больших данных – это ценность. Иногда системы и процессы очень сложны, что затрудняет использование данных и извлечение фактических значений.

Жизненный цикл больших данных

Итак, как на самом деле обрабатываются большие данные? Существует несколько различных подходов к реализации, но в стратегиях и программном обеспечении есть общие черты.

  • Внесение данных в систему
  • Сохранение данных в хранилище
  • Вычисление и анализ данных
  • Визуализация результатов

Прежде чем подробно рассмотреть эти четыре категории рабочих процессов, поговорим о кластерных вычислениях, важной стратегии, используемой многими средствами для обработки больших данных. Настройка вычислительного кластера является основой технологии, используемой на каждом этапе жизненного цикла.

Кластерные вычисления

Из-за качества больших данных отдельные компьютеры не подходят для обработки данных. Для этого больше подходят кластеры, так как они могут справляться с хранением и вычислительными потребностями больших данных.

Программное обеспечение для кластеризации больших данных объединяет ресурсы многих небольших машин, стремясь обеспечить ряд преимуществ:

  • Объединение ресурсов: для обработки больших наборов данных требуется большое количество ресурсов процессора и памяти, а также много доступного пространства для хранения данных.
  • Высокая доступность: кластеры могут обеспечивать различные уровни отказоустойчивости и доступности, благодаря чему аппаратные или программные сбои не повлияют на доступ к данным и их обработку. Это особенно важно для аналитики в реальном времени.
  • Масштабируемость: кластеры поддерживают быстрое горизонтальное масштабирование (добавление новых машин в кластер).

Для работы в кластере необходимы средства для управления членством в кластере, координации распределения ресурсов и планирования работы с отдельными нодами. Членство в кластерах и распределение ресурсов можно обрабатывать с помощью программ типа Hadoop YARN (Yet Another Resource Negotiator) или Apache Mesos.

Сборный вычислительный кластер часто выступает в качестве основы, с которой для обработки данных взаимодействует другое программное обеспечение. Машины, участвующие в вычислительном кластере, также обычно связаны с управлением распределенной системой хранения.

Получение данных

Прием данных – это процесс добавления необработанных данных в систему. Сложность этой операции во многом зависит от формата и качества источников данных и от того, насколько данные отвечают требованиям для обработки.

Добавить большие данные в систему можно с помощью специальных инструментов. Такие технологии, как Apache Sqoop, могут принимать существующие данные из реляционных БД и добавлять их в систему больших данных. Также можно использовать Apache Flume и Apache Chukwa – проекты, предназначенные для агрегирования и импорта логов приложений и серверов. Брокеры сообщений, такие как Apache Kafka, могут использоваться в качестве интерфейса между различными генераторами данных и системой больших данных. Фреймворки типа Gobblin могут объединить и оптимизировать вывод всех инструментов в конце конвейера.

Во время приема данных обычно проводится анализ, сортировка и маркировка. Этот процесс иногда называют ETL (extract, transform, load), что означает извлечение, преобразование и загрузку. Хотя этот термин обычно относится к устаревшим процессам хранения данных, иногда он применяется и к системам больших данных. среди типичных операций – изменение входящих данных для форматирования, категоризация и маркировка, фильтрация или проверка данных на соответствие требованиям.

В идеале, поступившие данные проходят минимальное форматирование.

Хранение данных

После приема данные переходят к компонентам, которые управляют хранилищем.

Обычно для хранения необработанных данных используются распределенные файловые системы. Такие решения, как HDFS от Apache Hadoop, позволяют записывать большие объемы данных на несколько нод в кластере. Эта система обеспечивает вычислительным ресурсам доступ к данным, может загрузить данные в ОЗУ кластера для операций с памятью и обрабатывать сбои компонентов. Вместо HDFS могут использоваться другие распределенные файловые системы, включая Ceph и GlusterFS.

Данные также можно импортировать в другие распределенные системы для более структурированного доступа. Распределенные базы данных, особенно базы данных NoSQL, хорошо подходят для этой роли, поскольку они могут обрабатывать неоднородные данные. Существует множество различных типов распределенных баз данных, выбор зависит от того, как вы хотите организовывать и представлять данные.

Вычисление и анализ данных

Как только данные будут доступны, система может начать обработку. Вычислительный уровень, пожалуй, является самой свободной частью системы, так как требования и подходы здесь могут значительно отличаться в зависимости от типа информации. Данные часто обрабатываются повторно: с помощью одного инструмента, либо с помощью ряда инструментов для обработки различных типов данных.

Пакетная обработка – это один из методов вычисления в больших наборах данных. Этот процесс включает разбивку данных на более мелкие части, планирование обработки каждой части на отдельной машине, перестановку данных на основе промежуточных результатов, а затем вычисление и сбор окончательного результата. Эту стратегию использует MapReduce от Apache Hadoop. Пакетная обработка наиболее полезна при работе с очень большими наборами данных, для которых требуется довольно много вычислений.

Другие рабочие нагрузки требуют обработки в режиме реального времени. При этом информация должна обрабатываться и готовиться немедленно, и система должна своевременно реагировать по мере поступления новой информации. Одним из способов реализации обработки в реальном времени является обработка непрерывного потока данных, состоящих из отдельных элементов. Еще одна общая характеристика процессоров реального времени – это вычисления данных в памяти кластера, что позволяет избежать необходимости записи на диск.

Apache Storm, Apache Flink и Apache Spark предлагают различные способы реализации обработки в реальном времени. Эти гибкие технологии позволяют подобрать наилучший подход для каждой отдельной проблемы. В общем, обработка в режиме реального времени лучше всего подходит для анализа небольших фрагментов данных, которые меняются или быстро добавляются в систему.

Все эти программы являются фреймворками. Однако есть много других способов вычисления или анализа данных в системе больших данных. Эти инструменты часто подключаются к вышеуказанным фреймворкам и предоставляют дополнительные интерфейсы для взаимодействия с нижележащими уровнями. Например, Apache Hive предоставляет интерфейс хранилища данных для Hadoop, Apache Pig предоставляет интерфейс запросов, а взаимодействия с данными SQL обеспечиваются с помощью Apache Drill, Apache Impala, Apache Spark SQL и Presto. В машинном обучении применяются Apache SystemML, Apache Mahout и MLlib от Apache Spark. Для прямого аналитического программирования, которое широко поддерживается экосистемой данных, используют R и Python.

Визуализация результатов

Часто распознавание тенденций или изменений в данных с течением времени важнее полученных значений. Визуализация данных – один из наиболее полезных способов выявления тенденций и организации большого количества точек данных.

Обработка в реальном времени используется для визуализации метрик приложения и сервера. Данные часто меняются, и большие разлеты в показателях обычно указывают на значительное влияние на состояние систем или организаций. Проекты типа Prometheus можно использовать для обработки потоков данных и временных рядов и визуализации этой информации.

Одним из популярных способов визуализации данных является стек Elastic, ранее известный как стек ELK. Logstash используется для сбора данных, Elasticsearch для индексирования данных, а Kibana – для визуализации. Стек Elastic может работать с большими данными, визуализировать результаты вычислений или взаимодействовать с необработанными метриками. Аналогичный стек можно получить, объединив Apache Solr для индексирования форк Kibana под названием Banana для визуализации. Такой стек называется Silk.

Другой технологией визуализации для интерактивной работы в области данных являются документы. Такие проекты позволяют осуществлять интерактивное исследование и визуализацию данных в формате, удобном для совместного использования и представления данных. Популярными примерами этого типа интерфейса являются Jupyter Notebook и Apache Zeppelin.

Глоссарий больших данных

  • Большие данные – широкий термин для обозначения наборов данных, которые не могут быть корректно обработаны обычными компьютерами или инструментами из-за их объема, скорости поступления и разнообразия. Этот термин также обычно применяется к технологиям и стратегиям для работы с такими данными.
  • Пакетная обработка – это вычислительная стратегия, которая включает обработку данных в больших наборах. Обычно этот метод идеально подходит для работы с несрочными данными.
  • Кластеризованные вычисления – это практика объединения ресурсов нескольких машин и управления их общими возможностями для выполнения задач. При этом необходим уровень управления кластером, который обрабатывает связь между отдельными нодами.
  • Озеро данных – большое хранилище собранных данных в относительно сыром состоянии. Этот термин часто используется для обозначения неструктурированных и часто меняющихся больших данных.
  • Добыча данных – это широкий термин для обозначения разных практик поиска шаблонов в больших наборах данных. Это попытка организовать массу данных в более понятный и связный набор информации.
  • Хранилище данных (data warehouse) — это большое, упорядоченное хранилище для анализа и отчетности. В отличие от озера данных хранилище состоит из отформатированных и хорошо упорядоченных данных, интегрированных с другими источниками. Хранилища данных часто упоминаются в отношении больших данных, но часто они являются компонентами обычных систем обработки данных.
  • ETL (extract, transform, и load) – извлечение, преобразование и загрузка данных. Так выглядит процесс получения и подготовки необработанных данных к использованию. Он связан с хранилищами данных, но характеристики этого процесса также обнаруживаются в конвейерах систем больших данных.
  • Hadoop – это проект Apache с открытым исходным кодом для больших данных. Он состоит из распределенной файловой системы под названием HDFS и планировщика кластеров и ресурсов, который называется YARN. Возможности пакетной обработки предоставляются механизмом вычисления MapReduce. Вместе с MapReduce в современных развертываниях Hadoop можно запускать другие вычислительные и аналитические системы.
  • Вычисления в памяти – это стратегия, которая предполагает полное перемещение рабочих наборов данных в память кластера. Промежуточные вычисления не записываются на диск, вместо этого они хранятся в памяти. Это дает системам огромное преимущество в скорости по сравнению с системами, связанными с I/O.
  • Машинное обучение – это исследование и практика проектирования систем, которые могут учиться, настраиваться и улучшаться на основе передаваемых им данных. Обычно под этим подразумевают реализацию прогнозирующих и статистических алгоритмов.
  • Map reduce (не путать с MapReduce от Hadoop) – это алгоритм планирования работы вычислительного кластера. Процесс включает в себя разделение задачи между нодами и получение промежуточных результатов, перетасовку и последующий вывод единого значения для каждого набора.
  • NoSQL – это широкий термин, обозначающий базы данных, разработанные вне традиционной реляционной модели. Базы данных NoSQL хорошо подходят для больших данных благодаря их гибкости и распределенной архитектуре.
  • Потоковая обработка – это практика вычисления отдельных элементов данных при их перемещении по системе. Это позволяет анализировать данные в режиме реального времени и подходит для обработки срочных операций с использованием высокоскоростных метрик.
Tags: ,

Предсказывалось, что общий мировой объем созданных и реплицированных данных в 2011-м может составить около 1,8 зеттабайта (1,8 трлн. гигабайт) - примерно в 9 раз больше того, что было создано в 2006-м.

Более сложное определение

Тем не менее `большие данные ` предполагают нечто большее, чем просто анализ огромных объемов информации. Проблема не в том, что организации создают огромные объемы данных, а в том, что бóльшая их часть представлена в формате, плохо соответствующем традиционному структурированному формату БД, - это веб-журналы, видеозаписи, текстовые документы, машинный код или, например, геопространственные данные. Всё это хранится во множестве разнообразных хранилищ, иногда даже за пределами организации. В результате корпорации могут иметь доступ к огромному объему своих данных и не иметь необходимых инструментов, чтобы установить взаимосвязи между этими данными и сделать на их основе значимые выводы. Добавьте сюда то обстоятельство, что данные сейчас обновляются все чаще и чаще, и вы получите ситуацию, в которой традиционные методы анализа информации не могут угнаться за огромными объемами постоянно обновляемых данных, что в итоге и открывает дорогу технологиям больших данных .

Наилучшее определение

В сущности понятие больших данных подразумевает работу с информацией огромного объема и разнообразного состава, весьма часто обновляемой и находящейся в разных источниках в целях увеличения эффективности работы, создания новых продуктов и повышения конкурентоспособности. Консалтинговая компания Forrester дает краткую формулировку: `Большие данные объединяют техники и технологии, которые извлекают смысл из данных на экстремальном пределе практичности`.

Насколько велика разница между бизнес-аналитикой и большими данными?

Крейг Бати, исполнительный директор по маркетингу и директор по технологиям Fujitsu Australia, указывал, что бизнес-анализ является описательным процессом анализа результатов, достигнутых бизнесом в определенный период времени, между тем как скорость обработки больших данных позволяет сделать анализ предсказательным, способным предлагать бизнесу рекомендации на будущее. Технологии больших данных позволяют также анализировать больше типов данных в сравнении с инструментами бизнес-аналитики, что дает возможность фокусироваться не только на структурированных хранилищах.

Мэтт Слокум из O"Reilly Radar считает, что хотя большие данные и бизнес-аналитика имеют одинаковую цель (поиск ответов на вопрос), они отличаются друг от друга по трем аспектам.

  • Большие данные предназначены для обработки более значительных объемов информации, чем бизнес-аналитика, и это, конечно, соответствует традиционному определению больших данных.
  • Большие данные предназначены для обработки более быстро получаемых и меняющихся сведений, что означает глубокое исследование и интерактивность. В некоторых случаях результаты формируются быстрее, чем загружается веб-страница.
  • Большие данные предназначены для обработки неструктурированных данных, способы использования которых мы только начинаем изучать после того, как смогли наладить их сбор и хранение, и нам требуются алгоритмы и возможность диалога для облегчения поиска тенденций, содержащихся внутри этих массивов.

Согласно опубликованной компанией Oracle белой книге `Информационная архитектура Oracle: руководство архитектора по большим данным` (Oracle Information Architecture: An Architect"s Guide to Big Data), при работе с большими данными мы подходим к информации иначе, чем при проведении бизнес-анализа.

Работа с большими данными не похожа на обычный процесс бизнес-аналитики, где простое сложение известных значений приносит результат: например, итог сложения данных об оплаченных счетах становится объемом продаж за год. При работе с большими данными результат получается в процессе их очистки путём последовательного моделирования: сначала выдвигается гипотеза, строится статистическая, визуальная или семантическая модель, на ее основании проверяется верность выдвинутой гипотезы и затем выдвигается следующая. Этот процесс требует от исследователя либо интерпретации визуальных значений или составления интерактивных запросов на основе знаний, либо разработки адаптивных алгоритмов `машинного обучения `, способных получить искомый результат. Причём время жизни такого алгоритма может быть довольно коротким.

Методики анализа больших данных

Существует множество разнообразных методик анализа массивов данных, в основе которых лежит инструментарий, заимствованный из статистики и информатики (например, машинное обучение). Список не претендует на полноту, однако в нем отражены наиболее востребованные в различных отраслях подходы. При этом следует понимать, что исследователи продолжают работать над созданием новых методик и совершенствованием существующих. Кроме того, некоторые из перечисленных них методик вовсе не обязательно применимы исключительно к большим данным и могут с успехом использоваться для меньших по объему массивов (например, A/B-тестирование, регрессионный анализ). Безусловно, чем более объемный и диверсифицируемый массив подвергается анализу, тем более точные и релевантные данные удается получить на выходе.

A/B testing . Методика, в которой контрольная выборка поочередно сравнивается с другими. Тем самым удается выявить оптимальную комбинацию показателей для достижения, например, наилучшей ответной реакции потребителей на маркетинговое предложение. Большие данные позволяют провести огромное количество итераций и таким образом получить статистически достоверный результат.

Association rule learning . Набор методик для выявления взаимосвязей, т.е. ассоциативных правил, между переменными величинами в больших массивах данных. Используется в data mining .

Classification . Набор методик, которые позволяет предсказать поведение потребителей в определенном сегменте рынка (принятие решений о покупке, отток, объем потребления и проч.). Используется в data mining .

Cluster analysis . Статистический метод классификации объектов по группам за счет выявления наперед не известных общих признаков. Используется в data mining .

Crowdsourcing . Методика сбора данных из большого количества источников.

Data fusion and data integration . Набор методик, который позволяет анализировать комментарии пользователей социальных сетей и сопоставлять с результатами продаж в режиме реального времени.

Data mining . Набор методик, который позволяет определить наиболее восприимчивые для продвигаемого продукта или услуги категории потребителей, выявить особенности наиболее успешных работников, предсказать поведенческую модель потребителей.

Ensemble learning . В этом методе задействуется множество предикативных моделей за счет чего повышается качество сделанных прогнозов.

Genetic algorithms . В этой методике возможные решения представляют в виде `хромосом`, которые могут комбинироваться и мутировать. Как и в процессе естественной эволюции, выживает наиболее приспособленная особь.

Machine learning . Направление в информатике (исторически за ним закрепилось название `искусственный интеллект`), которое преследует цель создания алгоритмов самообучения на основе анализа эмпирических данных.

Natural language processing (NLP ). Набор заимствованных из информатики и лингвистики методик распознавания естественного языка человека.

Network analysis . Набор методик анализа связей между узлами в сетях. Применительно к социальным сетям позволяет анализировать взаимосвязи между отдельными пользователями, компаниями, сообществами и т.п.

Optimization . Набор численных методов для редизайна сложных систем и процессов для улучшения одного или нескольких показателей. Помогает в принятии стратегических решений, например, состава выводимой на рынок продуктовой линейки, проведении инвестиционного анализа и проч.

Pattern recognition . Набор методик с элементами самообучения для предсказания поведенческой модели потребителей.

Predictive modeling . Набор методик, которые позволяют создать математическую модель наперед заданного вероятного сценария развития событий. Например, анализ базы данных CRM -системы на предмет возможных условий, которые подтолкнут абоненты сменить провайдера.

Regression . Набор статистических методов для выявления закономерности между изменением зависимой переменной и одной или несколькими независимыми. Часто применяется для прогнозирования и предсказаний. Используется в data mining.

Sentiment analysis . В основе методик оценки настроений потребителей лежат технологии распознавания естественного языка человека. Они позволяют вычленить из общего информационного потока сообщения, связанные с интересующим предметом (например, потребительским продуктом). Далее оценить полярность суждения (позитивное или негативное), степень эмоциональности и проч.

Signal processing . Заимствованный из радиотехники набор методик, который преследует цель распознавания сигнала на фоне шума и его дальнейшего анализа.

Spatial analysis . Набор отчасти заимствованных из статистики методик анализа пространственных данных – топологии местности, географических координат, геометрии объектов. Источником больших данных в этом случае часто выступают геоинформационные системы (ГИС).

  • Revolution Analytics (на базе языка R для мат.статистики).

Особый интерес в этом списке представляет Apache Hadoop – ПО с открытым кодом, которое за последние пять лет испытано в качестве анализатора данных большинством трекеров акций . Как только Yahoo открыла код Hadoop сообществу с открытым кодом, в ИТ-индустрии незамедлительно появилось целое направление по созданию продуктов на базе Hadoop. Практически все современные средства анализа больших данных предоставляют средства интеграции с Hadoop. Их разработчиками выступают как стартапы, так и общеизвестные мировые компании.

Рынки решений для управления большими данными

Платформы больших данных (BDP, Big Data Platform) как средство борьбы с цифровым хордингом

Возможность анализировать большие данные , в просторечии называемая Big Data, воспринимается как благо, причем однозначно. Но так ли это на самом деле? К чему может привести безудержное накопление данных? Скорее всего к тому, что отечественные психологи применительно к человеку называют патологическим накопительством, силлогоманией или образно "синдромом Плюшкина". По-английски порочная страсть собирать все подряд называют хордингом (от англ. hoard – «запас»). По классификации ментальных заболеваний хординг причислен к психическим расстройствам. В цифровую эпоху к традиционному вещественному хордингу добавляется цифровой (Digital Hoarding), им могут страдать как отдельные личности, так и целые предприятия и организации ().

Мировой и рынок России

Big data Landscape - Основные поставщики

Интерес к инструментам сбора, обработки, управления и анализа больших данных проявляли едва ли не все ведущие ИТ-компании, что вполне закономерно. Во-первых, они непосредственно сталкиваются с этим феноменом в собственном бизнесе, во-вторых, большие данные открывают отличные возможности для освоения новых ниш рынка и привлечения новых заказчиков.

На рынке появлялось множество стартапов, которые делают бизнес на обработке огромных массивов данных. Часть из них используют готовую облачную инфраструктуру, предоставляемую крупными игроками вроде Amazon.

Теория и практика Больших данных в отраслях

История развития

2017

Прогноз TmaxSoft: следующая «волна» Big Data потребует модернизации СУБД

Предприятиям известно, что в накопленных ими огромных объемах данных содержится важная информация об их бизнесе и клиентах. Если компания сможет успешно применить эту информацию, то у нее будет значительное преимущество по сравнению с конкурентами, и она сможет предложить лучшие, чем у них, продукты и сервисы. Однако многие организации всё еще не могут эффективно использовать большие данные из-за того, что их унаследованная ИТ-инфраструктура неспособна обеспечить необходимую емкость систем хранения, процессы обмена данных, утилиты и приложения, необходимые для обработки и анализа больших массивов неструктурированных данных для извлечения из них ценной информации, указали в TmaxSoft.

Кроме того, увеличение процессорной мощности, необходимой для анализа постоянно увеличивающихся объемов данных, может потребовать значительных инвестиций в устаревшую ИТ-инфраструктуру организации, а также дополнительных ресурсов для сопровождения, которые можно было бы использовать для разработки новых приложений и сервисов.

5 февраля 2015 года Белый дом опубликовал доклад , в котором обсуждался вопрос о том, как компании используют «большие данные » для установления различных цен для разных покупателей - практика, известная как «ценовая дискриминация» или «дифференцированное ценообразование» (personalized pricing). Отчет описывает пользу «больших данных» как для продавцов, так и покупателей, и его авторы приходят к выводу о том, что многие проблемные вопросы, возникшие в связи с появлением больших данных и дифференцированного ценообразования, могут быть решены в рамках существующего антидискриминационного законодательства и законов, защищающих права потребителей.

В докладе отмечается, что в это время имеются лишь отдельные факты, свидетельствующие о том, как компании используют большие данные в контексте индивидуализированного маркетинга и дифференцированного ценообразования. Этот сведения показывают, что продавцы используют методы ценообразования, которые можно разделить на три категории:

  • изучение кривой спроса;
  • Наведение (steering) и дифференцированное ценообразование на основе демографических данных; и
  • целевой поведенческий маркетинг (поведенческий таргетинг - behavioral targeting) и индивидуализированное ценообразование.

Изучение кривой спроса : С целью выяснения спроса и изучения поведения потребителей маркетологи часто проводят эксперименты в этой области, в ходе которых клиентам случайным образом назначается одна из двух возможных ценовых категорий. «Технически эти эксперименты являются формой дифференцированного ценообразования, поскольку их следствием становятся разные цены для клиентов, даже если они являются «недискриминационными» в том смысле, что у всех клиенты вероятность «попасть» на более высокую цену одинакова».

Наведение (steering) : Это практика представления продуктов потребителям на основе их принадлежности к определенной демографической группе. Так, веб-сайт компьютерной компании может предлагать один и тот же ноутбук различным типам покупателей по разным ценам, уставленным на основе сообщённой ими о себе информации (например, в зависимости от того, является ли данный пользователь представителем государственных органов, научных или коммерческих учреждений, или же частным лицом) или от их географического расположения (например, определенного по IP-адресу компьютера).

Целевой поведенческий маркетинг и индивидуализированное ценообразование : В этих случаях персональные данные покупателей используются для целевой рекламы и индивидуализированного назначения цен на определенные продукты. Например, онлайн-рекламодатели используют собранные рекламными сетями и через куки третьих сторон данные об активности пользователей в интернете для того, чтобы нацелено рассылать свои рекламные материалы. Такой подход, с одной стороны, дает возможность потребителям получить рекламу представляющих для них интерес товаров и услуг, Он, однако, может вызвать озабоченность тех потребителей, которые не хотят, чтобы определенные виды их персональных данных (такие, как сведения о посещении сайтов, связанных с медицинскими и финансовыми вопросами) собирались без их согласия.

Хотя целевой поведенческий маркетинг широко распространен, имеется относительно мало свидетельств индивидуализированного ценообразования в онлайн-среде. В отчете высказывается предположение, что это может быть связано с тем, что соответствующие методы все ещё разрабатываются, или же с тем, что компании не спешат использовать индивидуальное ценообразование (либо предпочитают о нём помалкивать) - возможно, опасаясь негативной реакции со стороны потребителей.

Авторы отчета полагают, что «для индивидуального потребителя использование больших данных, несомненно, связано как с потенциальной отдачей, так и с рисками». Признавая, что при использовании больших данных появляются проблемы прозрачности и дискриминации, отчет в то же время утверждает, что существующих антидискриминационных законов и законов по защиты прав потребителей достаточно для их решения. Однако в отчете также подчеркивается необходимость «постоянного контроля» в тех случаях, когда компании используют конфиденциальную информацию непрозрачным образом либо способами, которые не охватываются существующей нормативно-правовой базой.

Данный доклад является продолжением усилий Белого дома по изучению применения «больших данных» и дискриминационного ценообразования в Интернете, и соответствующих последствий для американских потребителей. Ранее уже сообщалось о том, что рабочая группа Белого дома по большим данным опубликовала в мае 2014 года свой доклад по этому вопросу. Федеральная комиссия по торговле (FTC) также рассматривала эти вопросы в ходе проведенного ею в сентября 2014 года семинара по дискриминации в связи с использованием больших данных .

2014

Gartner развеивает мифы о "Больших данных"

В аналитической записке осени 2014 года Gartner перечислен ряд распространенных среди ИТ-руководителей мифов относительно Больших Данных и приводятся их опровержения.

  • Все внедряют системы обработки Больших Данных быстрее нас

Интерес к технологиям Больших Данных рекордно высок: в 73% организаций, опрошенных аналитиками Gartner в этом году, уже инвестируют в соответствующие проекты или собираются. Но большинство таких инициатив пока еще на самых ранних стадиях, и только 13% опрошенных уже внедрили подобные решения. Сложнее всего - определить, как извлекать доход из Больших Данных, решить, с чего начать. Во многих организациях застревают на пилотной стадии, поскольку не могут привязать новую технологию к конкретным бизнес-процессам.

  • У нас так много данных, что нет нужды беспокоиться о мелких ошибках в них

Некоторые ИТ-руководители считают, что мелкие огрехи в данных не влияют на общие результаты анализа огромных объемов. Когда данных много, каждая ошибка в отдельности действительно меньше влияет на результат, отмечают аналитики, но и самих ошибок становится больше. Кроме того, большая часть анализируемых данных - внешние, неизвестной структуры или происхождения, поэтому вероятность ошибок растет. Таким образом, в мире Больших Данных качество на самом деле гораздо важнее.

  • Технологии Больших Данных отменят нужду в интеграции данных

Большие Данные обещают возможность обработки данных в оригинальном формате с автоматическим формированием схемы по мере считывания. Считается, что это позволит анализировать информацию из одних и тех же источников с помощью нескольких моделей данных. Многие полагают, что это также даст возможность конечным пользователям самим интерпретировать любой набор данных по своему усмотрению. В реальности большинству пользователей часто нужен традиционный способ с готовой схемой, когда данные форматируются соответствующим образом, и имеются соглашения об уровне целостности информации и о том, как она должна соотноситься со сценарием использования.

  • Хранилища данных нет смысла использовать для сложной аналитики

Многие администраторы систем управления информацией считают, что нет смысла тратить время на создание хранилища данных, принимая во внимание, что сложные аналитические системы пользуются новыми типами данных. На самом деле во многих системах сложной аналитики используется информация из хранилища данных. В других случаях новые типы данных нужно дополнительно готовить к анализу в системах обработки Больших Данных; приходится принимать решения о пригодности данных, принципах агрегации и необходимом уровне качества - такая подготовка может происходить вне хранилища.

  • На смену хранилищам данных придут озера данных

В реальности поставщики вводят заказчиков в заблуждение, позиционируя озера данных (data lake) как замену хранилищам или как критически важные элементы аналитической инфраструктуры. Основополагающим технологиям озер данных не хватает зрелости и широты функциональности, присущей хранилищам. Поэтому руководителям, отвечающим за управление данными, стоит подождать, пока озера достигнут того же уровня развития, считают в Gartner.

Accenture: 92% внедривших системы больших данных, довольны результатом

Среди главных преимуществ больших данных опрошенные назвали:

  • «поиск новых источников дохода» (56%),
  • «улучшение опыта клиентов» (51%),
  • «новые продукты и услуги» (50%) и
  • «приток новых клиентов и сохранение лояльности старых» (47%).

При внедрении новых технологий многие компании столкнулись с традиционными проблемами. Для 51% камнем преткновения стала безопасность, для 47% - бюджет, для 41% - нехватка необходимых кадров, а для 35% - сложности при интеграции с существующей системой. Практически все опрошенные компании (около 91%) планируют в скором времени решать проблему с нехваткой кадров и нанимать специалистов по большим данным.

Компании оптимистично оценивают будущее технологий больших данных. 89% считают, что они изменят бизнес столь же сильно, как и интернет. 79% респондентов отметили, что компании, которые не занимаются большими данными, потеряют конкурентное преимущество.

Впрочем, опрошенные разошлись во мнении о том, что именно стоит считать большими данными. 65% респондентов считают, что это «большие картотеки данных», 60% уверены, что это «продвинутая аналитика и анализ», а 50% - что это «данные инструментов визуализации».

Мадрид тратит 14,7 млн евро на управление большими данными

В июле 2014 г. стало известно о том, что Мадрид будет использовать технологии big data для управления городской инфраструктурой. Стоимость проекта - 14,7 млн евро, основу внедряемых решений составят технологии для анализа и управления большими данными. С их помощью городская администрация будет управлять работой с каждым сервис-провайдером и соответствующим образом оплачивать ее в зависимости от уровня услуг.

Речь идет о подрядчиках администрации, которые следят за состоянием улиц, освещением, ирригацией, зелеными насаждениями, осуществляют уборку территории и вывоз, а также переработку мусора. В ходе проекта для специально выделенных инспекторов разработаны 300 ключевых показателей эффективности работы городских сервисов, на базе которых ежедневно будет осуществляться 1,5 тыс. различных проверок и замеров. Кроме того, город начнет использование инновационной технологическлй платформы под названием Madrid iNTeligente (MiNT) - Smarter Madrid.

2013

Эксперты: Пик моды на Big Data

Все без исключения вендоры на рынке управления данными в это время ведут разработку технологий для менеджмента Big Data. Этот новый технологический тренд также активно обсуждается профессиональными сообществом, как разработчиками, так и отраслевыми аналитиками и потенциальными потребителями таких решений.

Как выяснила компания Datashift, по состоянию на январь 2013 года волна обсуждений вокруг «больших данных » превысила все мыслимые размеры. Проанализировав число упоминаний Big Data в социальных сетях, в Datashift подсчитали, что за 2012 год этот термин употреблялся около 2 млрд раз в постах, созданных около 1 млн различных авторов по всему миру. Это эквивалентно 260 постам в час, причем пик упоминаний составил 3070 упоминаний в час.

Gartner: Каждый второй ИТ-директор готов потратиться на Big data

После нескольких лет экспериментов с технологиями Big data и первых внедрений в 2013 году адаптация подобных решений значительно возрастет, прогнозируют в Gartner . Исследователи опросили ИТ-лидеров во всем мире и установили, что 42% опрошенных уже инвестировали в технологии Big data или планируют совершить такие инвестиции в течение ближайшего года (данные на март 2013 года).

Компании вынуждены потратиться на технологии обработки больших данных , поскольку информационный ландшафт стремительно меняется, требую новых подходов к обработки информации. Многие компании уже осознали, что большие массивы данных являются критически важными, причем работа с ними позволяет достичь выгод, не доступных при использовании традиционных источников информации и способов ее обработки. Кроме того, постоянное муссирование темы «больших данных» в СМИ подогревает интерес к соответствующим технологиям.

Фрэнк Байтендидк (Frank Buytendijk), вице-президент Gartner, даже призвал компании умерить пыл, поскольку некоторые проявляют беспокойство, что отстают от конкурентов в освоении Big data.

«Волноваться не стоит, возможности для реализации идей на базе технологий «больших данных» фактически безграничны», - заявил он.

По прогнозам Gartner, к 2015 году 20% компаний списка Global 1000 возьмут стратегический фокус на «информационную инфраструктуру».

В ожидании новых возможностей, которые принесут с собой технологии обработки «больших данных», уже сейчас многие организации организуют процесс сбора и хранения различного рода информации.

Для образовательных и правительственных организаций, а также компаний отрасли промышленности наибольший потенциал для трансформации бизнеса заложен в сочетании накопленных данных с так называемыми dark data (дословно – «темными данными»), к последним относятся сообщения электронной почты, мультимедиа и другой подобный контент. По мнению Gartner, в гонке данных победят именно те, кто научится обращаться с самыми разными источниками информации.

Опрос Cisco: Big Data поможет увеличить ИТ-бюджеты

В ходе исследования (весна 2013 года) под названием Cisco Connected World Technology Report, проведенного в 18 странах независимой аналитической компанией InsightExpress, были опрошены 1 800 студентов колледжей и такое же количество молодых специалистов в возрасте от 18 до 30 лет. Опрос проводился, чтобы выяснить уровень готовности ИТ-отделов к реализации проектов Big Data и получить представление о связанных с этим проблемах, технологических изъянах и стратегической ценности таких проектов.

Большинство компаний собирает, записывает и анализирует данные. Тем не менее, говорится в отчете, многие компании в связи с Big Data сталкиваются с целым рядом сложных деловых и информационно-технологических проблем. К примеру, 60 процентов опрошенных признают, что решения Big Data могут усовершенствовать процессы принятия решений и повысить конкурентоспособность, но лишь 28 процентов заявили о том, что уже получают реальные стратегические преимущества от накопленной информации.

Более половины опрошенных ИТ-руководителей считают, что проекты Big Data помогут увеличить ИТ-бюджеты в их организациях, так как будут предъявляться повышенные требования к технологиям, персоналу и профессиональным навыкам. При этом более половины респондентов ожидают, что такие проекты увеличат ИТ-бюджеты в их компаниях уже в 2012 году. 57 процентов уверены в том, что Big Data увеличит их бюджеты в течение следующих трех лет.

81 процент респондентов заявили, что все (или, по крайней мере, некоторые) проекты Big Data потребуют применения облачных вычислений. Таким образом, распространение облачных технологий может сказаться на скорости распространения решений Big Data и на ценности этих решений для бизнеса.

Компании собирают и используют данные самых разных типов, как структурированные, так и неструктурированные. Вот из каких источников получают данные участники опроса (Cisco Connected World Technology Report):

Почти половина (48 процентов) ИТ-руководителей прогнозирует удвоение нагрузки на их сети в течение ближайших двух лет. (Это особенно характерно для Китая , где такой точки зрения придерживаются 68 процентов опрошенных, и Германии – 60 процентов). 23 процента респондентов ожидают утроения сетевой нагрузки на протяжении следующих двух лет. При этом лишь 40 процентов респондентов заявили о своей готовности к взрывообразному росту объемов сетевого трафика.

27 процентов опрошенных признали, что им необходимы более качественные ИТ-политики и меры информационной безопасности .

21 процент нуждается в расширении полосы пропускания.

Big Data открывает перед ИТ-отделами новые возможности для наращивания ценности и формирования тесных отношений с бизнес-подразделениями, позволяя повысить доходы и укрепить финансовое положение компании. Проекты Big Data делают ИТ-подразделения стратегическим партнером бизнес-подразделений.

По мнению 73 процентов респондентов, именно ИТ-отдел станет основным локомотивом реализации стратегии Big Data. При этом, считают опрошенные, другие отделы тоже будут подключаться к реализации этой стратегии. Прежде всего, это касается отделов финансов (его назвали 24 процента респондентов), научно-исследовательского (20 процентов), операционного (20 процентов), инженерного (19 процентов), а также отделов маркетинга (15 процентов) и продаж (14 процентов).

Gartner: Для управления большими данными нужны миллионы новых рабочих мест

Мировые ИТ расходы достигнут $3,7 млрд к 2013 году, что на 3,8% больше расходов на информационные технологии в 2012 году (прогноз на конец года составляет $3,6 млрд). Сегмент больших данных (big data) будет развиваться гораздо более высокими темпами, говорится в отчете Gartner .

К 2015 году 4,4 млн рабочих мест в сфере информационных технологий будет создано для обслуживания больших данных, из них 1,9 млн рабочих мест – в . Более того, каждое такое рабочее место повлечет за собой создание трех дополнительных рабочих мест за пределами сферы ИТ, так что только в США в ближайшие четыре года 6 млн человек будет трудиться для поддержания информационной экономики.

По мнению экспертов Gartner, главная проблема состоит в том, что в отрасли для этого недостаточно талантов: как частная, так и государственная образовательная система, например, в США не способны снабжать отрасль достаточным количеством квалифицированных кадров. Так что из упомянутых новых рабочих мест в ИТ кадрами будет обеспечено только одно из трех.

Аналитики полагают, что роль взращивания квалифицированных ИТ кадров должны брать на себя непосредственно компании, которые в них остро нуждаются, так как такие сотрудники станут пропуском для них в новую информационную экономику будущего.

2012

Первый скепсис в отношении "Больших данных"

Аналитики компаний Ovum и Gartner предполагают, что для модной в 2012 году темы больших данных может настать время освобождения от иллюзий.

Термином «Большие Данные», в это время как правило, обозначают постоянно растущий объем информации, поступающей в оперативном режиме из социальных медиа, от сетей датчиков и других источников, а также растущий диапазон инструментов, используемых для обработки данных и выявления на их основе важных бизнес-тенденций.

«Из-за шумихи (или несмотря на нее) относительно идеи больших данных производители в 2012 году с огромной надеждой смотрели на эту тенденцию», - отметил Тони Байер, аналитик Ovum.

Байер сообщил, что компания DataSift провела ретроспективный анализ упоминаний больших данных в

Большие данные (или Big Data) - это совокупность методов работы с огромными объёмами структурированной или неструктурированной информации. Специалисты по работе с большими данными занимаются её обработкой и анализом для получения наглядных, воспринимаемых человеком результатов. Look At Me поговорил с профессионалами и выяснил, какова ситуация с обработкой больших данных в России, где и чему лучше учиться тем, кто хочет работать в этой сфере.

Алексей Рывкин об основных направлениях в сфере больших данных, общении с заказчиками и мире чисел

Я учился в Московском институте электронной техники. Главное, что мне удалось оттуда вынести, - это фундаментальные знания по физике и математике. Одновременно с учёбой я работал в R&D-центре, где занимался разработкой и внедрением алгоритмов помехоустойчивого кодирования для средств защищённой передачи данных. После окончания бакалавриата я поступил в магистратуру бизнес-информатики Высшей школы экономики. После этого я захотел работать в IBS. Мне повезло, что в то время в связи с большим количеством проектов шёл дополнительный набор стажёров, и после нескольких собеседований я начал работать в IBS, одной из крупнейших российских компаний этой области. За три года я прошёл путь от стажёра до архитектора корпоративных решений. Сейчас занимаюсь развитием экспертизы технологий Big Data для компаний-заказчиков из финансового и телекоммуникационного сектора.

Есть две основные специализации для людей, которые хотят работать с большими данными: аналитики и ИТ-консультанты, которые создают технологии для работы с большими данными. Кроме того, можно также говорить о профессии Big Data Analyst, т. е. людях, которые непосредственно работают с данными, с ИТ-платформой у заказчика. Раньше это были обычные аналитики-математики, которые знали статистику и математику и с помощью статистического ПО решали задачи по анализу данных. Сегодня, помимо знания статистики и математики, необходимо также понимание технологий и жизненного цикла данных. В этом, на мой взгляд, и заключается отличие современных Data Analyst от тех аналитиков, которые были прежде.

Моя специализация - ИТ-консалтинг, то есть я придумываю и предлагаю заказчикам способы решения бизнес-задач с помощью ИТ-технологий. В консалтинг приходят люди с различным опытом, но самые важные качества для этой профессии - это умение понимать потребности клиента, стремление помогать людям и организациям, хорошие коммуникационные и командные навыки (поскольку это всегда работа с клиентом и в команде), хорошие аналитические способности. Очень важна внутренняя мотивация: мы работаем в конкурентной среде, и заказчик ждёт необычных решений и заинтересованности в работе.

Большая часть времени у меня уходит на общение с заказчиками, формализацию их бизнес-потребностей и помощь в разработке наиболее подходящей технологической архитектуры. Критерии выбора здесь имеют свою особенность: помимо функциональных возможностей и ТСО (Total cost of ownership - общая стоимость владения) очень важны нефункциональные требования к системе, чаще всего это время отклика, время обработки информации. Чтобы убедить заказчика, мы часто используем подход proof of concept - предлагаем бесплатно «протестировать» технологию на какой-то задаче, на узком наборе данных, чтобы убедиться, что технология работает. Решение должно создавать для заказчика конкурентное преимущество за счёт получения дополнительных выгод (например, x-sell , кросс-продажи) или решать какую-то проблему в бизнесе, скажем, снизить высокий уровень мошенничества по кредитам.

Было бы гораздо проще, если бы клиенты приходили с готовой задачей, но пока они не понимают, что появилась революционная технология, которая может изменить рынок за пару лет

С какими проблемами приходится сталкиваться? Рынок пока не готов использовать технологии «больших данных». Было бы гораздо проще, если бы клиенты приходили с готовой задачей, но пока они не понимают, что появилась революционная технология, которая может изменить рынок за пару лет. Именно поэтому мы, по сути, работаем в режиме стартапа - не просто продаём технологии, но и каждый раз убеждаем клиентов, что нужно в эти решения инвестировать. Это такая позиция визионеров - мы показываем заказчикам, как можно поменять свой бизнес с привлечением данных и ИТ. Мы создаем этот новый рынок - рынок коммерческого ИТ-консалтинга в области Big Data.

Если человек хочет заниматься дата-анализом или ИТ-консалтингом в сфере Big Data, то первое, что важно, - это математическое или техническое образование с хорошей математической подготовкой. Также полезно освоить конкретные технологии, допустим SAS , Hadoop , язык R или решения IBM. Кроме того, нужно активно интересоваться прикладными задачами для Big Data - например, как их можно использовать для улучшенного кредитного скоринга в банке или управления жизненным циклом клиента. Эти и другие знания могут быть получены из доступных источников: например, Coursera и Big Data University . Также есть Customer Analytics Initiative в Wharton University of Pennsylvania, где опубликовано очень много интересных материалов.

Серьёзная проблема для тех, кто хочет работать в нашей области, - это явный недостаток информации о Big Data. Ты не можешь пойти в книжный магазин или в на какой-то сайт и получить, например, исчерпывающий сборник кейсов по всем применениям технологий Big Data в банках. Таких справочников не существует. Часть информации находится в книгах, ещё часть собирается на конференциях, а до чего-то приходится доходить самим.

Ещё одна проблема заключается в том, что аналитики хорошо чувствуют себя в мире чисел, но им не всегда комфортно в бизнесе. Такие люди часто интровертны, им трудно общаться, и поэтому им сложно убедительно доносить до клиентов информацию о результатах исследований. Для развития этих навыков я бы рекомендовал такие книги, как «Принцип пирамиды», «Говори на языке диаграмм». Они помогают развить презентационные навыки, лаконично и понятно излагать свои мысли.

Мне очень помогло участие в разных кейс-чемпионатах во время учебы в НИУ ВШЭ. Кейс-чемпионаты - это интеллектуальные соревнования для студентов, где нужно изучать бизнес-проблемы и предлагать их решение. Они бывают двух видов: кейс-чемпионаты консалтинговых фирм, например, McKinsey, BCG, Accenture, а также независимые кейс-чемпионаты типа Changellenge . Во время участия в них я научился видеть и решать сложные задачи - от идентификации проблемы и её структурирования до защиты рекомендаций по её решению.

Олег Михальский о российском рынке и специфике создания нового продукта в сфере больших данных

До прихода в Acronis я уже занимался запуском новых продуктов на рынок в других компаниях. Это всегда интересно и сложно одновременно, поэтому меня сразу заинтересовала возможность работы над облачными сервисами и решениями для хранения данных. В этой сфере пригодился весь мой предыдущий опыт работы в ИТ-отрасли, включая собственный стартап-проект I-accelerator . Помогло также и наличие бизнес-образования (MBA) в дополнение к базовому инженерному.

В России у крупных компаний - банков, мобильных операторов и т. д. - есть потребность в анализе больших данных, поэтому в нашей стране есть перспективы для тех, кто хочет работать в этой области. Правда, многие проекты сейчас являются интеграционными, то есть сделанными на основе зарубежных наработок или open source-технологий. В таких проектах не создаются принципиально новые подходы и технологии, а скорее адаптируются уже имеющиеся наработки. В Acronis мы пошли другим путём и, проанализировав имеющиеся альтернативы, решили вложиться в собственную разработку, создав в результате систему надёжного хранения для больших данных, которая по себестоимости не уступает, например, Amazon S3 , но работает надёжно и эффективно и на существенно меньших масштабах. Собственные разработки по большим данным есть и у крупных интернет-компаний, но они скорее ориентированы на внутренние нужды, чем удовлетворение потребностей внешних клиентов.

Важно понимать тренды и экономические силы, которые влияют на область обработки больших данных. Для этого нужно много читать, слушать выступления авторитетных специалистов в ИТ-индустрии, посещать тематические конференции. Сейчас почти каждая конференция имеет секцию про Big Data, но все они рассказывают об этом под разным углом: с точки зрения технологий, бизнеса или маркетинга. Можно пойти на проектную работу или стажировку в компанию, которая уже ведёт проекты по данной тематике. Если вы уверены в своих силах, то ещё не поздно организовать стартап в сфере Big Data.

Без постоянного контакта с рынком новая разработка рискует оказаться невостребованной

Правда, когда вы отвечаете за новый продукт, много времени уходит на аналитику рынка и общение с потенциальными клиентами, партнёрами, профессиональными аналитиками, которые знают много о клиентах и их потребностях. Без постоянного контакта с рынком новая разработка рискует оказаться невостребованной. Всегда есть много неопределённостей: вы должны понять, кто станут первыми пользователями (early adopters), что у вас есть для них ценного и как затем привлечь массовую аудиторию. Вторая по важности задача - это сформировать и донести до разработчиков чёткое и целостное видение конечного продукта, чтобы мотивировать их на работу в таких условиях, когда некоторые требования ещё могут меняться, а приоритеты зависят от обратной связи, поступающей от первых клиентов. Поэтому важная задача - это управление ожиданиями клиентов с одной стороны и разработчиков с другой. Так, чтобы ни те ни другие не потеряли интерес и довели проект до завершения. После первого успешного проекта становится проще, и главной задачей будет найти правильную модель роста для нового бизнеса.

Big Data – англ. «большие данные». Термин появился как альтернатива СУБД и стал одним из основных трендов IT-инфраструктуры, когда большинство гигантов индустрии – IBM, Microsoft, HP, Oracle и другие начали использовать это понятие в своих стратегиях. Под Big Data понимают огромный (сотни терабайт) массив данных, который нельзя обработать традиционными способами; иногда – инструменты и методы обработки этих данных.

Примеры источников Big Data: события RFID, сообщения в соцсетях, метеорологическая статистика, информация о местонахождении абонентов сетей мобильной сотовой связи и данные с устройств аудио-/видеорегистрации. Поэтому «большие данные» широко используются на производстве, в здравоохранении, госуправлении, интернет-бизнесе – в частности, при анализе целевой аудитории.

Характеристика

Признаки big data определяются как «три V»: Volume – объем (действительно большие); variety – разнородность, множество; velocity – скорость (необходимость очень быстрой обработки).

Большие данные чаще всего неструктурированные, и для их обработки нужны особые алгоритмы. Кметодам анализа больших данных относятся:

  • («добыча данных») – комплекс подходов для обнаружения скрытых полезных знаний, которые не могут быть получены стандартными способами;
  • Crowdsourcing (crowd — «толпа», sourcing – использование в качестве источника) – решение значимых задач общими усилиями добровольцев, не состоящих в обязательном трудовом договоре и отношениях, координирующих деятельность при помощи инструментов IT;
  • Data Fusion & Integration («смешение и внедрение данных») – набор методов для соединения множества источников в рамках проведения глубокого анализа;
  • Machine Learning («машинное обучение») – подраздел исследований искусственного интеллекта, изучающий методы использования анализа статистики и получения прогнозов на основе базовых моделей;
  • распознавание образов (например, распознавание лиц в видоискателе фотоаппарата или видеокамеры);
  • пространственный анализ – использование топологии, геометрии и географии для построения данных;
  • визуализация данных – вывод аналитической информации в виде иллюстраций и диаграмм при помощи интерактивных инструментов и анимации для отслеживания результатов и построения фундамента дальнейшего мониторинга.

Хранение и анализ информации осуществляется на большом количестве серверов высокой производительности. Ключевой технологией является Hadoop, с открытым исходным кодом.

Так как количество информации со временем будет только увеличиваться, то сложность состоит не в том, чтобы получить данные, а в том как их обработать с максимальной пользой. В целом, процесс работы с Big Data включает в себя: сбор информации, ее структурирование, создание инсайтов и контекстов, разработка рекомендаций к действию. Еще до первого этапа важно четко определить цель работы: для чего именно нужны данные, к примеру – определение целевой аудитории продукта. Иначе есть риск получить массу сведений без понимания о том, как конкретно их можно использовать.