Термореле с термопарой своими руками. Как собрать терморегулятор в домашних условиях

Автономный обогрев частного дома позволяет выбирать индивидуальные температурные режимы, что очень комфортно и экономно для жильцов. Чтобы каждый раз не при смене погоды на улице не задавать другой режим в помещении, можно использовать терморегулятор или термореле для отопления, который можно установить и на радиаторы и на котёл.

Автоматическая регулировка тепла в помещении

Для чего это нужно

  • Самым распространённым на территории Российской Федерации является , на газовых котлах. Но такая, с позволения сказать, роскошь, доступна далеко не во всех районах и местностях. Причины тому самые банальные – отсутствие ТЭЦ или центральных котельных, а так же газовых магистралей поблизости.
  • Приходилось ли вам когда-либо побывать отдалённом от густонаселённых районов жилом доме, насосной или метеостанции в зимнюю пору, когда единственным средством сообщения являются сани с дизельным двигателем? В таких ситуациях очень часто устраивают отопление своими руками при помощи электричества.

  • Для небольших помещений, например, одна комната дежурного на насосной станции, достаточно – его хватит для самой суровой зимы, но для большей площади уже потребуется отопительный котёл и система радиаторов. Чтобы сохранить нужную температуру в котле, предлагаем вашему вниманию самодельное регулирующее устройство.

Температурный датчик

  • В этой конструкции не нужны терморезисторы или различные датчики типа ТСМ , здесь вместо них задействован биполярный обыкновенный транзистор. Как и всех полупроводниковых приборов, его работа в большой степени зависит от окружающей среды, точнее, от её температуры. С повышением температуры ток коллектора возрастает, а это негативно сказывается на работе усилительного каскада – рабочая точка смещается вплоть до искажения сигнала и транзистор попросту не реагирует на входной сигнал, то есть, перестает работать.

  • Диоды тоже относятся к полупроводникам , и повышение температуры отрицательно сказывается и на них. При t25⁰C «прозвонка» свободного кремниевого диода покажет 700мВ, а у перманентного – около 300мВ, но если температура повышается, то соответственно будет понижаться прямое напряжение прибора. Так, при повышении температуры на 1⁰C напряжение будет понижаться на 2мВ, то есть, -2мВ/1⁰C.

  • Такая зависимость полупроводниковых приборов позволяет использовать их в качестве температурных датчиков. На таком отрицательном каскадном свойстве с фиксированным базовым током и основана вся схема работы терморегулятора (схема на фото вверху).
  • Температурный датчик смонтирован на транзисторе VT1 типа КТ835Б , нагрузка каскада – резистор R1, а режим работы по постоянному току транзистора задают резисторы R2 и R3. Чтобы напряжение на транзисторном эмиттере при комнатной температуре было 6,8В, фиксированное смещение задаётся резистором R3.

Совет. По этой причине на схеме R 3 помечен знаком * и особой точности здесь добиваться не следует, только бы не было больших перепадов. Эти измерения можно провести относительно транзисторного коллектора, соединённым источником питания с общим приводом.

  • Транзистор p-n-p КТ835Б подобран специально, его коллектор соединяется с металлической корпусной пластинкой, имеющей отверстие для крепления полупроводника на радиатор. Именно за это отверстие прибор крепится к пластине, к которой ещё прикреплён подводной провод.
  • Собранный датчик крепиться к трубе отопления при помощи металлических хомутов , и конструкцию не нужно изолировать какой-либо прокладкой от трубы отопления. Дело в том, что коллектор соединён одним проводом с источником питания – это значительно упрощает весь датчик и делает контакт лучше.

Компаратор

  • Компаратор, смонтированный на операционный усилитель ОР1 типа К140УД608, задаёт температуру. На инвертируемый вход R5 подаётся напряжение с эмиттера VT1, а через R6 – на неинвертируемый вход поступает напряжение с движка R7.
  • Такое напряжение определяет температуру для отключения нагрузки. Верхний и нижний диапазон для установки порога на срабатывание компаратора задаются при помощи R8 и R9. Нужный постерезис срабатывания компаратора обеспечивает R4.

Управление нагрузкой

  • На VT2 и Rel1 сделано устройство управления нагрузкой и индикатор режима работы терморегулятора находится здесь же – красный цвет при нагреве, а зелёный – достижение необходимой температуры. Параллельно обмотке Rel1 включен диод VD1 для защиты VT2 от напряжения, вызванного самоиндукцией на катушке Rel1 при отключении.

Совет. На рисунке выше видно, что допустимая коммутация тока реле 16A, значит, допускает управление нагрузкой до 3кВт. Используйте прибор для мощности 2-2,5кВт, чтобы облегчить нагрузку.

Блок питания

  • Произвольная инструкция позволяет для настоящего терморегулятора в виду его небольшой мощности задействовать в качестве блока питания дешёвый китайский адаптер. Также можно самому собрать выпрямитель на 12В, с током потребления схемы не более 200мА. Для этой цели сгодится трансформатор мощностью до 5Вт и выходом от 15 до 17В.
  • Диодный мостик сделан на диодах 1N4007, а стабилизатор на напряжения на интегральном типа 7812. В виду небольшой мощности устанавливать стабилизатор на батарею не требуется.

Наладка терморегулятора

  • Для проверки датчика можно использовать самую обыкновенную настольную лампу с абажуром из металла. Как было отмечено выше, комнатная температура позволяет выдерживать напряжение на эмиттере VT1 около 6,8В, но если повысить её до 90⁰C, то напряжение упадёт до 5,99В. Для замеров можно использовать обычный китайский мультиметр с термопарой типа DT838.
  • Компаратор работает следующим образом: если напряжение термодатчика на инвертирующем входе выше напряжения на неинвертирущем, то на выходе оно будет равнозначным с напряжением источника питания – это будет логическая единица. Поэтому VT2 открывается и реле включается, перемещая релейные контакты в режим нагрева.
  • Температурный датчик VT1 греется по мере нагревания отопительного контура и с повышением температуры понижается напряжение на эмиттере. В тот момент, когда оно опускается немного ниже напряжения, которое задано на движке R7, получается логический ноль, что приводит к запиранию транзистора и отключению реле.
  • В это время напряжение на котёл не поступает и система начинает остывать, что также влечёт за собой остывание датчика VT1. Значит, напряжение на эмиттере повышается и как только оно переходит границу, установленную R7, реле запускается заново. Такой процесс будет повторяться постоянно.
  • Как вы понимаете, цена такого устройства невысока, зато позволяет выдерживать нужную температуру при любых погодных условиях. Это очень удобно в тех случаях, когда в помещении нет постоянных жителей, следящих за температурным режимом, или когда люди постоянно сменяют друг друга и к тому же заняты работой.

Терморегуляторы широко используются в современных бытовых приборах, автомобилях, системах отопления и кондиционирования, на производстве, в холодильном оборудовании и при работе печей. Принцип действия любого терморегулятора основан на включении или выключении различных приборов после достижения определенных значений температуры.

Современные цифровые терморегуляторы управляются при помощи кнопок: сенсорных или обычных. Многие модели также оснащены цифровой панелью, на которой отображается заданная температура. Группа программируемых терморегуляторов является самой дорогостоящей. С помощью прибора можно предусмотреть изменение температуры по часам или задать необходимый режим на неделю вперед. Управлять прибором можно дистанционно: через смартфон или компьютер.

Для сложного технологического процесса, например, сталеплавильной печи, сделать терморегулятор своими руками – задача довольно непростая, которая требует серьезных знаний. Но собрать небольшое устройство для кулера или инкубатора под силу любому домашнему мастеру.

Для того, чтобы понять, как работает регулятор температуры, рассмотрим простое устройство, которое используется для открывания и закрывания заслонки шахтового котла и срабатывает при нагреве воздуха.

Для работы устройства были использованы 2 алюминиевые трубы, 2 рычага, пружина для возврата, цепочка, которая идет к котлу, и регулировочный узел в виде кран-буксы. Все комплектующие были смонтированы на котел.

Как известно, коэффициент линейного теплового расширения алюминия составляет 22х10-6 0С. При нагревании алюминиевой трубы длиной полтора метра, шириной 0,02 м и толщиной 0,01 м до 130 градусов Цельсия происходит удлинение на 4,29 мм. При нагреве трубы расширяются, за счет этого происходит смещение рычагов, и заслонка закрывается. При остывании трубы уменьшаются в длине, а рычаги открывают заслонку. Основной проблемой при использовании данной схемы является то, что точно определить порог срабатывания терморегулятора очень сложно. Сегодня предпочтение отдается устройствам на основе электронных элементов.

Схема работы простого терморегулятора

Обычно для поддержания заданной температуры используются схемы на основе реле. Основными элементами, входящими в данное оборудование, являются:

  • температурный датчик;
  • пороговая схема;
  • исполнительное или индикаторное устройство.

В качестве датчика можно использовать полупроводниковые элементы, термисторы, термометры сопротивления, термопары и биметаллические термореле.

Схема терморегулятор реагирует на превышения параметра над заданным уровнем и включает исполнительное устройство. Самым простым вариантом такого прибора является элемент на биполярных транзисторах. Термореле выполнено на основе триггера Шмидта. В роли датчика температуры выступает терморезистор – элемент, сопротивление которого изменяется в зависимости от повышения или понижения градусов.

R1 – это потенциометр, который устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. За счет регулировки происходит срабатывание исполнительного устройства и коммутации реле K1, когда сопротивление терморезистора изменяется. При этом рабочее напряжение реле должно соответствовать рабочему питанию оборудования. Чтобы защитить выходной транзистор от импульсов напряжения, параллельно подсоединен полупроводниковый диод. Величина нагрузки подключаемого элемента зависит от максимального тока электромагнитного реле.

Внимание! В интернете можно увидеть картинки с чертежами термостата для разного оборудования. Но довольно часто изображение и описание не соответствуют друг другу. Иногда на рисунках могут быть представлены просто другие устройства. Поэтому изготовление можно начинать только после тщательного изучения всей информации.

Перед началом работ следует определиться с мощностью будущего терморегулятора и температурным диапазоном, в котором предстоит ему работать. Для холодильника потребуются одни элементы, а для отопления –другие.

Терморегулятор на трех элементах

Одним из элементарных устройств, на примере которого можно собрать и понять принцип работы, является простой терморегулятор своими руками, предназначенный для вентилятора в ПК. Все работы производятся на макетной плате. Если же существуют проблемы с пальником, то можно взять беспаечную плату.

Схема терморегулятор в этом случае состоит всего лишь из трех элементов:

  • силового транзистора MOSFET (N канальный), можно использовать IRFZ24N MOSFET 12 В и 10 А или IFR510 Power MOSFET;
  • потенциометра 10 кОм;
  • NTC термистора в 10 кОм, который будет выполнять роль сенсора температуры.

Термодатчик реагирует на повышение градусов, за счет чего срабатывает вся схема, и вентилятор включается.

Теперь переходим к настройке. Для этого включаем компьютер и регулируем потенциометр, задавая значение для выключенного вентилятора. В тот момент, когда температура приближается к критической, максимально уменьшаем сопротивление до того, как лопасти будут вращаться очень медленно. Лучше сделать настройку несколько раз, чтобы убедиться в эффективности работы оборудования.

Современная электронная промышленность предлагает элементы и микросхемы, значительно отличающиеся по виду и техническим характеристикам. У каждого сопротивления или реле есть несколько аналогов. Необязательно использовать только те элементы, которые указаны в схеме, можно брать и другие, совпадающие по параметрам с образцами.

Терморегуляторы для котлов отопления

При регулировке отопительных систем важно точно откалибровать прибор. Для этого потребуется измеритель напряжения и тока. Для создания работающей системы можно воспользоваться следующей схемой.

С помощью этой схемы можно создать наружное оборудование для контроля за твердотопливным котлом. Роль стабилитрона здесь выполняет микросхема К561ЛА7. Работа устройства основана на способности терморезистора уменьшать сопротивление при нагреве. Резистор подключается в сеть делителя напряжения электричества. Необходимую температуру можно задать с помощью переменного резистора R2. Напряжение поступает на инвертор 2И-НЕ. Полученный ток подается на конденсатор С1. К 2И-НЕ, который контролирует работу одного триггера, подключен конденсатор. Последний соединен со вторым триггером.

Контроль температуры идет по следующей схеме:

  • при понижении градусов напряжение в реле растет;
  • при достижении определенного значения вентилятор, который соединен с реле, выключается.

Напайку лучше производить на слепыше. В качестве элемента питания можно взять любое устройство, работающее в пределах 3-15 В.

Осторожно! Установка самодельных приборов любого назначения на системы отопления может привести к выходу из строя оборудования. Более того, использование подобных устройств может быть запрещено на уровне служб, осуществляющих подвод коммуникаций в вашем доме.

Цифровой терморегулятор

Для того чтобы создать полноценно функционирующий терморегулятор с точной калибровкой, без цифровых элементов не обойтись. Рассмотрим прибор для контроля температур в небольшом хранилище для овощей.

Основным элементом здесь является микроконтроллер PIC16F628A. Эта микросхема обеспечивает управление разными электронными устройствами. В микроконтроллере PIC16F628A собраны 2 аналоговых компаратора, внутренний генератор, 3 таймера, модули сравнения ССР и обмена передачи данных USART.

При работе терморегулятора значение существующей и заданной температуры подается на MT30361 – трехразрядный индикатор с общим катодом. Для того чтобы задать необходимую температуру, используются кнопки: SB1 – для уменьшения и SB2 – для увеличения. Если проводить настойку с одновременным нажатием кнопки SB3, то можно установить значения гистерезиса. Минимальным значением гистерезиса для этой схемы является 1 градус. Подробный чертеж можно увидеть на плане.

При создании любого из устройств важно не только правильно спаять саму схему, но и продумать, как лучше разместить оборудование. Необходимо, чтобы сама плата была защищена от влаги и пыли, иначе не избежать короткого замыкания и выхода из строя отдельных элементов. Также следует позаботиться об изоляции всех контактов.

Видео

Простой электронный терморегулятор своими руками. Предлагаю способ изготовления самодельного терморегулятора для поддержания комфортной температуры в помещении в холодное время. Термостат позволяет коммутировать мощность до 3,6 кВт. Самая важная часть любой радиолюбительской конструкции это корпус. Красивый и надежный корпус позволит обеспечить длительную жизнь любому самодельному устройству. В показанном ниже варианте терморегулятора применен удобный малогабаритный корпус и вся силовая электроника от продаваемого в магазинах электронного таймера. Самодельная электронная часть построена на микросхеме компараторе LM311.

Описание работы схемы

Датчиком температуры является терморезистор R1 номиналом 150к типа ММТ-1. Датчик R1 вместе с резисторами R2,R3,R4 и R5 образуют измерительный мост. Конденсаторы С1-С3 установлены для подавления помех. Переменный резистор R3 осуществляет балансировку моста, то есть задает температуру.

Если температура термодатчика R1 снизится ниже заданной, то его сопротивление повысится. Напряжение на входе 2 микросхемы LM311 станет больше чем на входе 3. Компаратор сработает и на его выходе 4 установится высокий уровень, поданное напряжение на электронную схему таймера через светодиод HL1 приведет к срабатываю реле и включению устройства обогрева. Одновременно загорится светодиод HL1, показывая включение нагрева. Сопротивление R6 создает отрицательную обратную связь между выходом 7 и входом 2 . Это позволяет установить гистерезис, то есть нагрев включается при температуре меньшей, чем выключается.Питание на плату подается от электронной схемы таймера. Резистор R1 помещаемый снанужи требует тщательной изоляции, так как питание терморегулятора безтрансформаторное и не имеет гальванической развязки от сети, то есть опасное сетевое напряжение присутствует на элементах устройства . Порядок изготовления терморегулятора и как осуществлена изоляция терморезистора показано ниже.

Как сделать терморегулятор своими руками

1. Вскрывается донор корпуса и силовой схемы — электронный таймер CDT-1G. На сером трехжильном шлейфе установлен микроконтроллер таймера. Отпаиваем шлейф от платы. Отверстия для проводов шлейфа имеют маркировку (+) — питание +5 Вольт, (О) — подача управляющего сигнала, (-) — минус питания. Коммутировать нагрузку будет электромагнитное реле.

2. Так как питание схемы от силового блока не имеет гальванической развязки от сети, то все работы по проверки и настройке схемы проводим от безопасного источника питания 5 вольт. Сначала на стенде проверяем работоспособность элементов схемы.

3. После проверки элементов схемы конструкция собирается на плате. Плата для устройства не разрабатывалась и собрана на куске макетной платы. После сборки также проводится проверка работоспособности на стенде.

4. Термодатчик R1 установлен снаружи на боковой поверхности корпуса блок- розетки, проводники изолированы термоусадочной трубкой. Для недопущения контакта с датчиком, но и сохранения доступа наружного воздуха к датчику сверху установлена защитная трубка. Трубка изготовлена из средней части шариковой авторучки. В трубке вырезано отверстие для установки на датчик. Трубка приклеена к корпусу.

5. Переменный резистор R3 установлен на верхней крышке корпуса, там же сделано отверстие для светодиода. Корпус резистора полезно для безопасности покрыть слоем изоленты.

6. Ручка регулировки для резистора R3 самодельная и изготовлена своими руками из старой зубной щетки подходящей формы:).

Резистор R3

Используется во многих технологических процессах, в том числе и для бытовых отопительных систем. Фактором определяющим действие терморегулятора, является наружная температура, значение которой анализируется и при достижении установленного предела, расход сокращается либо увеличивается.

Терморегуляторы бывают различного исполнения и сегодня в продаже достаточно много промышленных версий, работающих по различному принципу и предназначенных для использования в разных областях. Также доступны и простейшие электронные схемы, собрать которые может любой, при наличии соответствующих познаний в электронике.

Описание

Терморегулятор представляет собой устройство, устанавливаемое в системах энергоснабжения и позволяющее оптимизировать затраты энергии на обогрев. Основные элементы терморегулятора:

  1. Температурные датчики – контролируют уровень температуры, формируя электрические импульсы соответствующей величины.
  2. Аналитический блок – обрабатывает электрические сигналы поступающие от датчиков и производит конвертацию значения температуры в величину, характеризующую положение исполнительного органа.
  3. Исполнительный орган – регулирует подачу, на величину указанную аналитическим блоком.

Современный терморегулятор – это микросхема на основе диодов, триодов или стабилитрона, могущих преобразовывать энергию тепла в электрическую. Как в промышленном, так и самодельном варианте, это единый блок, к которому подключается термопара, выносная или располагаемая здесь же. Терморегулятор включается последовательно в электрическую цепь питания исполняющего органа, таким образом, уменьшая или увеличивая значение питающего напряжения.

Принцип работы

Датчик температуры подает электрические импульсы, величина тока которых зависит от уровня температуры. Заложенное соотношение этих величин позволяет устройству очень точно определить температурный порог и принять решение, например, на сколько градусов должна быть открыта заслонка подачи воздуха в твердотопливный котел, либо открыта задвижка подачи горячей воды. Суть работы терморегулятора заключается в преобразовании одной величины в другую и соотнесении результата с уровнем силы тока.

Простые самодельные регуляторы, как правило, имеют механическое управление в виде резистора, передвигая который, пользователь устанавливает необходимый температурный порог срабатывания, то есть, указывая, при какой наружной температуре необходимо будет увеличить подачу. Имеющие более расширенный функционал, промышленные приборы, могут программироваться на более широкие пределы, при помощи контроллера, в зависимости от различных диапазонов температуры. У них отсутствуют механические элементы управления, что способствует долгой работе.

Как сделать своими руками

Сделанные собственноручно регуляторы получили широкое применение в бытовых условиях, тем более, что необходимые электронные детали и схемы всегда можно найти. Подогрев воды в аквариуме, включение вентилирования помещения при повышении температуры и многие другие несложные технологические операции вполне можно переложить на такую автоматику.

Схемы авторегуляторов

В настоящее время, у любителей самодельной электроники, популярностью пользуются две схемы автоматического управления:

  1. На основе регулируемого стабилитрона типа TL431 – принцип работы состоит в фиксации превышения порога напряжения в 2,5 вольт. Когда на управляющем электроде он будет пробит, стабилитрон приходит в открытое положение и через него проходит нагрузочный ток. В том случае, когда напряжение не пробивает порог в 2,5 вольт, схема приходит в закрытое положение и отключает нагрузку. Достоинство схемы в предельной простоте и высокой надежности, так как стабилитрон оснащается только одним входом, для подачи регулируемого напряжения.
  2. Тиристорная микросхема типа К561ЛА7, либо ее современный зарубежный аналог CD4011B – основным элементом является тиристор Т122 или КУ202, выполняющий роль мощного коммутирующего звена. Потребляемый схемой ток в нормальном режиме не превышает 5 мА, при температуре резистора от 60 до 70 градусов. Транзистор приходит в открытое положение при поступлении импульсов, что в свою очередь является сигналом для открытия тиристора. При отсутствии радиатора, последний приобретает пропускную способность до 200 Вт. Для увеличения этого порога, понадобится установка более мощного тиристора, либо оснащение уже имеющегося радиатором, что позволит довести коммутируемую способность до 1 кВт.

Необходимые материалы и инструменты

Сборка самостоятельно не займет много времени, однако обязательно потребуются некоторые знания в области электроники и электротехники, а также опыт работы с паяльником. Для работы необходимо следующее:

  • Паяльник импульсный или обычный с тонким нагревательным элементом.
  • Печатная плата.
  • Припой и флюс.
  • Кислота для вытравливания дорожек.
  • Электронные детали согласно выбранной схемы.

Схема терморегулятора

Пошаговое руководство

  1. Электронные элементы необходимо разместить на плате с таким расчетом, чтобы их легко было монтировать, не задевая паяльником соседние, возле деталей активно выделяющих тепло, расстояние делают несколько большим.
  2. Дорожки между элементами протравливаются согласно рисунку, если такого нет, то предварительно выполняется эскиз на бумаге.
  3. Обязательно проверяется работоспособность каждого элемента и только после этого выполняется посадка на плату с последующим припаиванием к дорожкам.
  4. Необходимо проверять полярность диодов, триодов и других деталей в соответствии со схемой.
  5. Для пайки радиодеталей не рекомендуется использовать кислоту, поскольку она может закоротить близкорасположенные соседние дорожки, для изоляции, в пространство между ними добавляется канифоль.
  6. После сборки, выполняется регулировка устройства, путем подбора оптимального резистора для максимально точного порога открывания и закрывания тиристора.

Область применения самодельных терморегуляторов

В быту, применение терморегулятора встречается чаще всего у дачников, эксплуатирующих самодельные инкубаторы и как показывает практика, они не менее эффективны, чем заводские модели. По сути, использовать такое устройство можно везде, где необходимо произвести какие-то действия зависящие от показаний температуры. Аналогично можно оснастить автоматикой систему опрыскивания газона или полива, выдвижения светозащитных конструкций или просто звуковую, либо световую сигнализацию, предупреждающую о чем-либо.


Ремонт своими руками

Собранные собственноручно, эти приборы служат достаточно долго, однако существует несколько стандартных ситуаций, когда может потребоваться ремонт:

  • Выход из строя регулировочного резистора – случается наиболее часто, поскольку изнашиваются медные дорожки, внутри элемента, по которым скользит электрод, решается заменой детали.
  • Перегрев тиристора или триода – неправильно была подобрана мощность или прибор находится в плохо вентилируемой зоне помещения. Чтобы в дальнейшем избежать подобного, тиристоры оборудуются радиаторами, либо же следует переместить терморегулятор в зону с нейтральным микроклиматом, что особенно актуально для влажных помещений.
  • Некорректная регулировка температуры – возможно повреждение терморезистора, коррозия или грязь на измерительных электродах.

Преимущества и недостатки

Несомненно, использование автоматического регулирования, уже само по себе является преимуществом, так как потребитель энергии получает такие возможности:

  • Экономия энергоресурсов.
  • Постоянная комфортная температура в помещении.
  • Не требуется участие человека.

Автоматическое управление нашло особенно большое применение в системах отопления многоквартирных домов. Оборудуемые терморегуляторами вводные задвижки автоматически управляют подачей теплоносителя, благодаря чему жители получают значительно меньшие счета.

Недостатком такого прибора можно считать его стоимость, что впрочем, не относится к тем, что изготовлены своими руками. Дорогостоящими являются только устройства промышленного исполнения, предназначенные для регулирования подачи жидких и газообразных сред, так как исполнительный механизм включает в себя специальный двигатель и другую запорную арматуру.

Хотя сам прибор достаточно нетребователен к условиям эксплуатации, точность реагирования зависит от качества первичного сигнала и особенно это касается автоматики работающей в условиях повышенной влажности или контактирующей с агрессивными средами. Термодатчики в таких случаях, не должны контактировать с теплоносителем напрямую.

Выводы закладываются в гильзу из латуни, и герметично запаиваются эпоксидным клеем. Оставить на поверхности можно торец терморезистора, что будет способствовать большей чувствительности.

Терморегуляторы повсеместно применяются в различных целях: в автомобилях, отопительных системах различного типа, холодильных камерах и печах. Их работа заключается в отключении или включении приборов после достижения определённой температуры. Простой механический терморегулятор своими руками сделать нетрудно. Современные конструкции имеют более сложную схему, но при некотором опыте можно сделать аналоги и таких стройств.

    Показать всё

    Механический терморегулятор

    На сегодня самые новые модели терморегуляторов управляются с помощью сенсорных кнопок, более старые модели - механическими. Большинство этих устройств имеют цифровую панель, где отображается температура теплоносителя в реальном времени, а также необходимый максимальный градус.

    Производство таких устройств не обходится без их программирования, поэтому их цена очень высокая. Они позволяют настроить температурный режим по разным параметрам, к примеру, по часам или дням недели. Температура при этом будет меняться автоматически.

    Если говорить о терморегуляторах для промышленных стальных печей, то сделать их самостоятельно будет сложно, так как они имеют сложную конструкцию и требуют внимания не одного специалиста. Такие в основном изготавливаются на заводах. Но сделать простой регулятор температуры своими руками для автономной отопительной системы, инкубаторов и т. п. - это несложная задача. Главное, придерживаться всех чертежей и рекомендаций по производству.

    Для того чтобы понять, как работает терморегулятор, можно разобрать простую механическую конструкцию. Она работает по принципу открывания и закрывания дверки (заслонки) котла, чем уменьшает или увеличивает доступ воздуха к камере сгорания. Реагирует датчик, конечно же, на температуру.

    Для производства такого устройства понадобятся следующие комплектующие :

    • пружина для возврата;
    • два рычага;
    • две алюминиевые трубки;
    • регулировочный узел (имеет вид кран-буксы);
    • цепочка, которая соединяет две части (термостат и дверку).

    Все комплектующие необходимо собрать и вмонтировать на котёл.

    Работает устройство благодаря свойству алюминия расширяться под воздействием температуры. В связи с этим заслонка и закрывается. Если температура уменьшается, алюминиевая труба остывает и уменьшается в размерах, поэтому заслонка приоткрывается.

    Но такая схема имеет и свои существенные минусы. Проблема в том, что определить таким образом, когда сработает заслонка, трудно. Чтобы приблизительно настроить механизм, нужны точные расчёты. Невозможно определить в точности насколько будет расширяться алюминиевая труба. Поэтому в большинстве случаев сейчас предпочитают устройства с электронными датчиками.

    Самодельный механический терморегулятор для шахтного котла

    Простой электронный прибор

    Для более точной работы автоматического регулятора температуры без электронных комплектующих не обойтись. Самые простые терморегуляторы работают по схеме на основе реле.



    Основными элементами такого устройства являются :

    • пороговая схема;
    • индикаторное устройство;
    • датчик температуры.

    Схема самодельного термостата должна реагировать на повышение (понижение) температуры и включать исполнительное устройство или приостанавливать его работу. Для реализации самой простой схемы следует использовать биполярные транзисторы. Термореле сделано по типу триггера Шмидта. Терморезистор будет выполнять функцию датчика температуры. Он будет изменять сопротивление в зависимости от температуры, которая настраивается в общем блоке управления.

    Но кроме терморезистора, термодатчиком могут выступать :

    • термисторы;
    • полупроводниковые элементы;
    • термометры сопротивления;
    • биметаллические реле;
    • термопары.

    Используя схемы и чертежи из неизвестных источников, стоит иметь в виду, что зачастую они не соответствуют приложенному описанию. В связи с этим необходимо тщательно изучить весь материал, до того как приступить к изготовлению устройства.

    Перед началом работ нужно определиться с температурным диапазоном устройства, а также его мощностью. Нужно учитывать, что для холодильника будут применяться одни комплектующие, а для отопительного оборудования - другие.

    Устройство из трёх комплектующих

    Простой электронный термостат своими руками можно собрать для использования на вентиляторах и персональных компьютерах. Таким образом, можно понять принцип его работы. В качестве основы используется макетная плата.

    Из инструментов понадобится паяльник, но если его нет или недостаточно опыта работы, то можно использовать и беспаечную плату.

    Схема состоит из трёх элементов :

    • силовой транзистор;
    • потенциометр;
    • термистор, который будет выполнять функцию датчика температуры.

    Термодатчик (термистор) реагирует на повышение градусов, в связи с этим вентилятор будет включаться.

    Для регулировки устройства сначала необходимо выставить данные для вентилятора в выключенном положении. После чего нужно включить компьютер и подождать когда он нагреется до определённой температуры, чтобы зафиксировать момент включения вентилятора. Настройка совершается несколько раз. Это позволит убедиться в эффективности работы.

    Сегодня современные изготовители различных элементов и микросхем могут предложить большой выбор запчастей. Все они отличаются по техническим характеристикам и внешнему виду.

    Терморегулятор своими руками

    Регуляторы температуры для отопительных систем

    При изготовлении и установке терморегулятора с датчиком температуры воздуха своими руками для отопительных систем необходимо точно откалибровать верхнюю и нижнюю черту. Это позволит избежать перегрева оборудования, что может привести к выходу из строя всей системы в лучшем случае. В худшем перегрев оборудования может привести к его взрыву и возможному летальному исходу.


    Для этих целей понадобится прибор для измерения силы тока. С помощью чертежей и схем можно сделать наружное оборудование для регулировки температуры твердотопливного котла. Для работы можно использовать схему К561ЛА7. Принцип функционирования заключается в той же способности терморезистора уменьшать или увеличивать сопротивление при определённых температурных условий. Нужные показатели можно задать с помощью резистора переменного тока. Сначала напряжение подаётся на инвертор, а потом передаётся на конденсаторы, которые соединены с триггерами и контролируют их работу.

    Принцип действия прост. При понижении градусов напряжение в реле возрастает. Если значение будет меньше нижних граничных показателей, вентилятор автоматически выключается.

    Напаивать элементы лучше на слепыше. В качестве блока питания можно использовать устройство, которое работает в пределах 3−15 В.

    Любое самодельное устройство, установленное на отопительную систему, может привести к выходу её из строя. Кроме этого, такие действия могут запрещаться службами государственного контроля. К примеру, если в доме установлен газовый котёл, то такое дополнительное оборудование может быть изъято газовой службой. В отдельных случаях даже выписываются штрафы.

    Терморегулятор для ТЭН своими руками: схема и инструкция

    Цифровое оборудование

    Для изготовления современного прибора с точной регулировкой необходимых градусов без цифровых комплектующих не обойтись.

    В качестве основной микросхемы используется PIC16F628A. С помощью такой схемы можно управлять различными устройствами электронного типа.

    Принцип работы тоже не является очень сложным. К трёхзарядному индикатору с общим катодом подаются значения заданной (необходимой) температуры и существующей на данный момент.

    Чтобы задать нужную температуру, в микросхеме есть два элемента sb1 и sb2, к которым в последующем припаиваются механические кнопки. Первый элемент служит для уменьшения температуры, а второй для увеличения.

    Установка значения гистерезиса выполняется с одновременным нажатием при настройке кнопки sb3.

    При самодельном изготовлении устройств важно не только правильно спаять и изготовить схему, но и разместить устройство на оборудовании в правильном месте. Сама плата должна быть защищена от попадания влаги и пыли, во избежание появления короткого замыкания, а соответственно выхода из строя устройства. Изоляция всех контактов также играет очень важную роль.

    Терморегуляторы

    Разновидности аппаратов на рынке

    Сегодня компании, которые производят такое оборудование, предлагают покупателю 3 основные разновидности устройств. Все они работают на разных внутренних сигналах. Именно их функция заключается в контроле над температурой и её выравнивании в зависимости от настроек прибора (верхней и нижней черты).



    Существует три вида внутренних сигналов :

    1. 1. Данные снимаются непосредственно с теплоносителя. В обиходе не очень популярный, так как его эффективность недостаточная. Принцип работы заключается в погружном датчике или другом подобном ему устройстве. Хотя с эффективностью есть проблемы, но на рынке относится к дорогому сегменту подобных устройств.
    2. 2. Внутренние воздушные волны. Этот вариант самый популярный, поскольку считается надёжным и экономичным. Он берёт данные не температуры теплоносителя, а непосредственно воздуха. Это позволяет добиться более высокой точности. Какой градус будет выставлен в блоке управления, такова и будет температура воздуха. Соединяется с отопительной системой с помощью кабеля. Такие модели постоянно усовершенствуются производителями, что делает их более удобными и функциональными.
    3. 3. Внешние воздушные волны. Функционирует на основе уличного датчика. Он срабатывает при любых изменениях погодных условий, и немедля реагирует, изменяя настройки отопительного оборудования.

    Такие аппараты могут быть как электрическими, так и электронными. Сигнал терморегуляторы могут получать в автоматическом или полуавтоматическом режиме. Работа и изменение температуры может происходить благодаря контролю за температурой радиаторов и веток магистрали или фиксируя изменения мощности котла.

    Сегодня на рынке есть много популярных моделей от топовых производителей, которые уже закрепили своё положение. К ним в первую очередь можно отнести E 51.716 и IWarm 710. Сам корпус небольших размеров и сделанный из пластполимера, который не горит. Несмотря на это в нём есть множество полезных функций. Дисплей, как на такие маленькие разеры, довольно большой. На нём отображаются все существующие данные. Стоят такие приборы в пределах 2500−3000 рублей.

    К функциональным особенностям первой модели можно отнести возможность её монтажа в стену в любом положении, температура регулируется одновременно от самого пола, а также наличия кабеля длиной в 3 м. При монтаже необходимо подумать о том, будет ли свободный доступ к устройству для беспрепятственного управления им.

    К вышеперечисленным плюсам можно добавить и некоторые минусы. К ним относится небольшй набор функций, которые есть в аналогах этих устройств. При пользовании это иногда вызывает дискомфорт. К тому же в этих моделях нет функции автоматического нагревания. Но при желании её можно доделать уже самостоятельно.

    Таким образом, сделать самостоятельно терморегулятор или приобрести и установить готовую модель не составит никакого труда, если в точности придерживаться всех схем, чертежей и инструкций по изготовлению и монтажу. Это оборудование позволит сэкономить время хозяев на ручной регулировке температуры определённых приборов.