Моделирование. Математические схемы моделирования

МАТЕМАТИЧЕСКИЕ СХЕМЫ МОДЕЛИРОВАНИЯ СИСТЕМ

ОСНОВНЫЕ ПОДХОДЫ К ПОСТРОЕНИЮ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ СИСТЕМ

Исходной информацией при построении математических моде­лей процессов функционирования систем служат данные о назна­чении и условиях работы исследуемой (проектируемой) системы S . Эта информация определяет основную цель моделирования систе­мы S и позволяет сформулировать требования к разрабатываемой математической модели М. Причем уровень абстрагирования за­висит от круга тех вопросов, на которые исследователь системы хочет получить ответ с помощью модели, и в какой-то степени определяет выбор математической схемы.

Математические схемы. Введение понятия математическая схема позволяет рассма­тривать математику не как метод расчета, а как метод мыш­ления, как средство формулирования понятий, что является наиболее важным при переходе от словесного описания си­стемы к формальному представлению процесса ее функцио­нирования в виде некоторой математической модели (ана­литической или имитационной). При пользовании математи­ческой схемой в первую очередь исследователя системы S должен интересовать вопрос об адекватности отображения в виде конкретных схем реальных процессов в исследуемой системе, а не возможность получения ответа (результата решения) на конкрет­ный вопрос исследования. Например, представление процесса функционирования информационно-вычислительной системы кол­лективного пользования в виде сети схем массового обслуживания дает возможность хорошо описать процессы, происходящие в си­стеме, но при сложных законах входящих потоков и потоков обслу­живания не дает возможности получения результатов в явном виде.

Математическую схему можно определить как звено при пере­ходе от содержательного к формальному описанию процесса функ­ционирования системы с учетом воздействия внешней среды, т. е. имеет место цепочка «описательная модель - математическая схе­ма - математическая (аналитическая или (и) имитационная) модель».

Каждая конкретная система S характеризуется набором свойств, под которыми понимаются величины, отражающие пове­дение моделируемого объекта (реальной системы) и учитывающие условия ее функционирования во взаимодействии с внешней средой (системой) Е. При построении математической модели системы не­обходимо решить вопрос об ее полноте. Полнота модели регули­руется, в основном, выбором границы «система S - среда Е ». Так­же должна быть решена задача упрощения модели, которая помогает выделить основные свойства системы, отбросив второстепен­ные. Причем отнесение свойств системы к основным или второ­степенным существенно зависит от цели моделирования системы (например, анализ вероятностно-временных характеристик процес­са функционирования системы, синтез структуры системы и т. д.).

Формальная модель объекта. Модель объекта моделирования, т. е. системы S, можно пред­ставить в виде множества величин, описывающих процесс функцио­нирования реальной системы и образующих в общем случае сле­дующие подмножества: совокупность входных воздействий на систему

;

совокупность воздействий внешней среды

;

совокупность внутренних, (собственных) параметров системы

;

совокупность выходных характеристик системы

.

Причем в перечисленных подмножествах можно выделить управляемые и неуправляемые переменные. В общем случае , , , являются элементами непересекающихся подмножеств и со­держат как детерминированные, так и стохастические составляю­щие.

При моделировании системы S входные воздействия, воздейст­вия внешней среды Е и внутренние параметры системы являются независимыми (экзогенными) переменными, которые в векторной форме имеют соответственно вид , , , а выходные характеристики системы являются зависимыми (эндо­генными) переменными и в векторной форме имеют вид ).

Процесс функционирования системы S описывается во времени оператором F s , который в общем случае преобразует экзогенные переменные в эндогенные в соответствии с соотношениями вида

. (1)

Совокупность зависимостей выходных характеристик системы от времени y j (t ) для всех видов
называется выходной траекторией
. Зависимость (1) называется законом функ­ционирования системы S и обозначается F s . В общем случае закон функционирования системы F s может быть задан в виде функции, функционала, логических условий, в алгоритмической и табличной формах или в виде словесного правила соответствия.

Весьма важным для описания и исследования системы S являет­ся понятие алгоритма функционирования A s , под которым понимает­ся метод получения выходных характеристик с учетом входных воз­действий
, воздействий внешней среды
и собственных па­раметров системы
. Очевидно, что один и тот же закон функ­ционирования F s системы S может быть реализован различными способами, т. е. с помощью множества различных алгоритмов функционирования A s .

Соотношения (1) являются математическим описанием пове­дения объекта (системы) моделирования во времени t , т. е. отра­жают его динамические свойства. Поэтому математические модели такого вида принято называть динамическими моделями (системами).

Для статических моделей математическая модель (1) представляет собой отображение между двумя подмножествами свойств моделируемого объекта Y и { X , V , Н}, что в векторной фор­ме может быть записано как

. (2)

Соотношения (1) и (2) могут быть заданы различными спо­собами: аналитически (с помощью формул), графически, таблично и т. д. Такие соотношения в ряде случаев могут быть получены через свойства системы S в конкретные моменты времени, называемые состояниями. Состояние системы S характеризуется векто­рами

и
,

где
,
, …,
в момент времени
;
,
, …,
в момент времени
и т.д.,
.

Если рассматривать процесс функционирования системы S как последовательную смену состояний
, то они могут быть интерпретированы как координаты точки в к -мерном фазовом пространстве. Причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех возможных значений состояний называется пространством со­стояний объекта моделирования Z , причем
.

Состояния системы S в момент времени t 0 < t *T полностью определяются начальными условиями
[где
,
, …,
], входными воздействиями
, собственными па­раметрами системы
и воздействиями внешней среды
, которые имели место за промежуток времени t *- t 0 , с помощью двух векторных уравнений

; (3)

. (4)

Первое уравнение по начальному состоянию и экзогенным переменным
определяет вектор-функцию
, а второе по полученному значению состояний
- эндогенные переменные на выходе системы
. Таким образом, цепочка уравнений объек­та «вход-состояния- выход» позволяет определить характери­стики системы

. (5)

В общем случае время в модели системы S может рассматри­ваться на интервале моделирования (0, Т) как непрерывное, так и дискретное, т. е. квантованное на отрезки длиной
временных единиц каждый, когда
, где
- число интервалов дискретизации.

Таким образом, под математической моделью объекта (реаль­ной системы) понимают конечное подмножество переменных {
} вместе с математическими связями между ними и ха­рактеристиками
.

Если математическое описание объекта моделирования не со­держит элементов случайности или они не учитываются, т. е. если можно считать, что в этом случае стохастические воздействия внешней среды
и стохастические внутренние параметры
отсутствуют, то модель называется детерминированной в том смысле, что характеристики однозначно определяются детермини­рованными входными воздействиями

. (6)

Очевидно, что детерминированная модель является частным случаем стохастической модели.

Типовые схемы. Приведенные математические соотношения представляют собой математические схемы общего вида и позволяют описать широкий класс систем. Однако в практике моделирования объектов в об­ласти системотехники и системного анализа на первоначальных этапах исследования системы рациональнее использовать типовые математические схемы: дифференциальные уравнения, конечные и вероятностные автоматы, системы массового обслуживания, сети Петри и т. д.

Не обладая такой степенью общности, как рассмотренные мо­дели, типовые математические схемы имеют преимущества просто­ты и наглядности, но при существенном сужении возможностей применения. В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представ­ления систем, функционирующих в непрерывном времени, исполь­зуются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функциони­рующих в дискретном времени, - конечные автоматы и конечно-разностные схемы. В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным вре­менем используются вероятностные автоматы, а для представления системы с непрерывным временем - системы массового обслужи­вания и т. д.

Перечисленные типовые математические схемы, естественно, не могут претендовать на возможность описания на их базе всех про­цессов, происходящих в больших информационно-управляющих си­стемах. Для таких систем в ряде слу­чаев более перспективным является применение агрегативных мо­делей.

Агрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характе­ра этих объектов. Именно при агрегативном описании сложный объект (система) расчленяется на конечное число частей (подси­стем), сохраняя при этом связи, обеспечивающие взаимодействие частей.

Таким образом, при построении математических моделей про­цессов функционирования систем можно выделить следующие основные подходы: непрерывно-детерминированный (например, дифференциальные уравнения); дискретно-детерминированный (ко­нечные автоматы); дискретно-стохастический (вероятностные авто­маты); непрерывно-стохастический (системы массового обслужи­вания); обобщенный или универсальный (агрегативные системы).

НЕПРЕРЫВНО-ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ (D-СХЕМЫ)

Рассмотрим особенности непрерывно-детерминированного под­хода на примере использования в качестве математических моде­лей дифференциальных уравнений. Дифференциальными уравне­ниями называются такие уравнения, в которых неизвестными будут функции одной или нескольких переменных, причем в уравнение входят не только функции, но и их производные различных поряд­ков. Если неизвестные - функции многих переменных, то уравне­ния называются уравнениями в частных производ­ных, в противном случае при рассмотрении функций только одной независимой переменной уравнения называются обыкновенны­ми дифференциальными уравнениями.

Основные соотношения. Обычно в таких математических моделях в качестве независи­мой переменной, от которой зависят неизвестные искомые функции, служит время t . Тогда математическое соотношение для детерми­нированных систем (6) в общем виде будет

, (7)

где
,
и
- п -мерные векторы;
- вектор-функция, которая определена на неко­тором (п +1)-мерном
множестве и является непрерывной.

Так как математические схемы такого вида отражают динами­ку изучаемой системы, т. е. ее поведение во времени, то они назы­ваются D -схемами (англ. dynamic ).

В простейшем случае обыкновенное дифференциальное уравне­ние имеет вид

. (8)

Наиболее важно для системотехники приложение D -схем в ка­честве математического аппарата в теории автоматического управления. Для иллюстрации особенностей построения и применения D-схем рассмотрим простейший пример формализации процесса функциони­рования двух элементарных систем различ­ной физической природы: механической S M (колебания маятника, рис. 1,а) и электри­ческой S K (колебательный контур рис. 1,б).

Рис. 1. Элементарные системы

Процесс малых колебаний маятника опи­сывается обыкновенным дифференциальным уравнением

где
- масса и длина подвеса маятника; g - ускорение сво­бодного падения;
- угол отклонения маятника в момент вре­мени t .

Из этого уравнения свободного колебания маятника можно найти оценки интересующих характеристик. Например, период ко­лебания маятника

.

Аналогично, процессы в электрическом колебательном контуре описываются обыкновенным дифференциальным уравнением

где L к , С к - индуктивность и емкость конденсатора; q (t ) - заряд конденсатора в момент времени t .

Из этого уравнения можно получить различные оценки харак­теристик процесса в колебательном контуре. Например, период электрических колебаний

.

Очевидно, что введя обозначения
,
, ,
, получим обыкновенное диффе­ренциальное уравнение второго порядка, описывающее поведение этой замкнутой системы:

где
- параметры системы; z (t ) - состояние системы в момент времени t .

Таким образом, поведение этих двух объектов может быть исследовано на основе общей математической модели (9). Кроме того, необходимо отметить, что поведение одной из систем может быть проанализировано с помощью другой. Например, поведение маятника (системы S M ) может быть изучено с помощью электри­ческого колебательного контура (системы S K ).

Если изучаемая система S , т. е. маятник или контур, взаимо­действует с внешней средой Е, то появляется входное воздейст­вие х(t ) (внешняя сила для маятника и источник энергии для контура) и непрерывно-детерминированная модель такой системы будет иметь вид

С точки зрения общей схемы математической модели х(t ) является входным (управляющим) воздействием, а состоя­ние системы S в данном случае можно рассматривать как выход­ную характеристику, т. е. полагать, что выходная переменная сов­падает с состоянием системы в данный момент времени у = z .

Возможные приложения. При решении задач системотехники важное значение имеют проблемы управления большими системами. Следует обра­тить внимание на системы автоматического управле­ния - частный случай динамических систем, описываемых D -схемами и выделенных в отдельный класс моделей в силу их практи­ческой специфики.

Описывая процессы автоматического управления, придержива­ются обычно представления реального объекта в виде двух систем: управляющей и управляемой (объекта управления). Структура многомерной системы автоматического управления общего вида представлена на рис. 2, где обозначены эндоген­ные переменные :
- вектор входных (задающих) воз­действий;
- вектор возмущающих воздействий;
- век­тор сигналов ошибки;
- вектор управляющих воздействий; экзогенные переменные :
- вектор состояний систе­мы S;
- вектор выходных переменных, обычно
=
.

Рис. 2. Структура системы автоматического управления

Современная управляющая система - это совокупность про­граммно-технических средств, обеспечивающих достижение объек­том управления определенной цели. Насколько точно объект управ­ления достигает заданной цели, можно судить для одномерной системы по координате состояния у(t ). Разность между задан­ным у зад (t ) и действительным у(t ) законом изменения управ­ляемой величины есть ошибка управления . Если предписанный закон изменения управляемой величины соответствует закону изменения входного (задающего) воздействия, т.е.
, то
.

Системы, для которых ошибки управления
во все мо­менты времени, называются идеальными. На практике реализация идеальных систем невозможна. Таким образом, ошибка h "(t ) - необходимый элемент автоматического управления, основанного на принципе отрицательной обратной связи, так как для приведения в соответствие выход­ной переменной y (t ) ее заданному значению ис­пользуется информация об отклонении между ними. Задачей системы автоматического управ­ления является измене­ние переменной y (t ) со­гласно заданному зако­ну с определенной точ­ностью (с допустимой ошибкой). При проек­тировании и эксплуата­ции систем автоматиче­ского управления необходимо выбрать такие параметры системы S , которые обеспечили бы требуемую точность управления, а также устойчивость системы в переходном процессе.

Если система устойчива, то представляет практический интерес поведение системы во времени, максимальное отклонение регули­руемой переменной у(t ) в переходном процессе, время переход­ного процесса и т. п. Выводы о свойствах систем автоматического управления различных классов можно сделать по виду дифферен­циальных уравнений, приближенно описывающих процессы в си­стемах. Порядок дифференциального уравнения и значения его коэффициентов полностью определяются статическими и динами­ческими параметрами системы S .

Таким образом, использование D -схем позволяет формализо­вать процесс функционирования непрерывно-детерминированных систем S и оценить их основные характеристики, применяя анали­тический или имитационный подход, реализованный в виде соот­ветствующего языка для моделирования непрерывных систем или использующий аналоговые и гибридные средства вычислитель­ной техники.

Классификация в любой области знаний необходима. Она позволяет обобщить накопленный опыт, упорядочить понятия предметной области. Стремительное развитие методов математического моделирования и многообразие областей их применения привели появлению большого количества моделей различных видов и к необходимости классификации моделей по тем категориям, которые являются универсальными для всех моделей или необходимы в области построенной модели, например. Приведем пример некоторых категорий: область использования; учёт в модели временного фактора (динамики); отрасль знаний; способ представления моделей; наличие или отсутствие случайных (или неопределенных) факторов; вид критерия эффективности и наложенных ограничений и т.д.

Анализируя математическую литературу, мы выделили наиболее часто встречающиеся признаки классификаций:

1. По методу реализации (в том числе формальному языку) все математические модели можно разбить на аналитические и алгоритмические.

Аналитические – модели, в которых используется стандартный математический язык. Имитационные – модели, в которых использован специальный язык моделирования или универсальный язык программирования.

Аналитические модели могут быть записаны в виде аналитических выражений, т.е. в виде выражений, содержащих счетное число арифметических действий и переходов к пределу, например: . Алгебраическое выражение является частным случаем аналитического выражения, оно обеспечивает в результате точное значение. Существуют также конструкции, позволяющие находить результирующее значение с заданной точностью (например, разложение элементарной функции в степенной ряд). Модели, использующие подобный прием, называют приближенными.

В свою очередь, аналитические модели разбиваются на теоретические и эмпирические модели. Теоретические модели отражают реальные структуры и процессы в исследуемых объектах, то есть, опираются на теорию их работы. Эмпирические модели строятся на основе изучения реакций объекта на изменение условий окружающей среды. При этом теория работы объекта не рассматривается, сам объект представляет собой так называемый «черный ящик», а модель – некоторую интерполяционную зависимость. Эмпирические модели могут быть построены на основе экспериментальных данных. Эти данные получают непосредственно на исследуемых объектах или с помощью их физических моделей.

Если какой-либо процесс не может быть описан в виде аналитической модели, его описывают с помощью специального алгоритма или программы. Такая модель является алгоритмической. При построении алгоритмических моделей используют численный или имитационный подходы. При численном подходе совокупность математических соотношений заменяется конечномерным аналогом (например, переход от функции непрерывного аргумента к функции дискретного аргумента). Затем выполняется построение вычислительного алгоритма, т.е. последовательности арифметических и логических действий. Найденное решение дискретного аналога принимается за приближенное решение исходной задачи. При имитационном подходе дискретизируется сам объект моделирования, строятся модели отдельных элементов системы.

2. По форме представления математических моделей различают:

1) Инвариантная модель – математическая модель представляющаяся системой уравнений (дифференциальных, алгебраических) без учета методов решения этих уравнений.

2) Алгебраическая модель – соотношение моделей связаны с выбранным численным методом решения и записаны в виде алгоритма (последовательности вычислений).

3) Аналитическая модель – представляет собой явные зависимости искомых переменных от заданных величин. Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений, используя табличные интегралы. К ним относятся также регрессионные модели, получаемые на основе результатов эксперимента.

4) Графическая модель представляется в виде графиков, эквивалентных схем, диаграмм и тому подобное. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математической модели.

3. В зависимости от вида критерия эффективности и наложенных ограничений модели подразделяются на линейные и нелинейные. В линейных моделях критерий эффективности и наложенные ограничения являются линейными функциями переменных модели (иначе нелинейные модели). Допущение о линейной зависимости критерия эффективности и совокупности наложенных ограничений от переменных модели на практике вполне приемлемо. Это позволяет для выработки решений использовать хорошо разработанный аппарат линейного программирования.

4. Учитывая фактор времени и области использования, выделяют статические и динамические модели . Если все входящие в модель величины не зависят от времени, то имеем статическую модель объекта или процесса (одномоментный срез информации по объекту). Т.е. статическая модель – это модель, в которой время не является переменной величиной. Динамическая модель позволяет увидеть изменения объекта во времени.

5. В зависимости от числа сторон, принимающих решение, выделяют два типа математических моделей: описательные и нормативные . В описательной модели нет сторон, принимающих решения. Формально число таких сторон в описательной модели равно нулю. Типичным примером подобных моделей является модели систем массового обслуживания. Для построения описательных моделей может также использоваться теория надежности, теория графов, теория вероятностей, метод статистических испытаний (метод Монте-Карло).

Для нормативной модели характерно множество сторон. Принципиально можно выделить два вида нормативных моделей: модели оптимизации и теоретико-игровые. В моделях оптимизации основная задача выработки решений технически сводится к строгой максимизации или минимизации критерия эффективности, т.е. определяются такие значения управляемых переменных, при которых критерий эффективности достигает экстремального значения (максимума или минимума).

Для выработки решений, отображаемых моделями оптимизации, наряду с классическими и новыми вариационными методами (поиск экстремума) наиболее широко используются методы математического программирования (линейное, нелинейное, динамическое). Для теоретико-игровой модели характерна множественность числа сторон (не менее двух). Если имеются две стороны с противоположными интересами, то используется теория игр, если число сторон более двух и между ними невозможны коалиции и компромиссы, то применяется теория бескоалиционных игр n лиц.

6. В зависимости от наличия или отсутствия случайных (или неопределенных) факторов выделяют детерминированные и стохастические математические модели. В детерминированных моделях все взаимосвязи, переменные и константы заданы точно, что приводит к однозначному определению результирующей функции. Детерминированная модель строится в тех случаях, когда факторы, влияющие на исход операции, поддаются достаточно точному измерению или оценке, а случайные факторы либо отсутствуют, либо ими можно пренебречь.

Если часть или все параметры, входящие в модель по своей природе являются случайными величинами или случайными функциями, то модель относят к классу стохастических моделей. В стохастических моделях задаются законы распределения случайных величин, что приводит к вероятностной оценке результирующей функции и реальность отображается как некоторый случайный процесс, ход и исход которого описывается теми или иными характеристиками случайных величин: математическими ожиданиями, дисперсиями, функциями распределения и т.д. Построение такой модели возможно, если имеется достаточный фактический материал для оценки необходимых вероятностных распределений или если теория рассматриваемого явления позволяет определить эти распределения теоретически (на основе формул теории вероятностей, предельных теорем и т.д.).

7. В зависимости от целей моделирования различают дескриптивные, оптимизационные и управленческие модели. В дескриптивных (от лат. descriptio – описание) моделях исследуются законы изменения параметров модели. Например, модель движения материальной точки под воздействием приложенных сил на основании второго закона Ньютона: . Задавая положение и ускорение точки в данный момент времени (входные параметры), массу (собственный параметр) и закон изменения прикладываемых сил (внешние воздействия), можно определить координаты точки и скорость в любой момент времени (выходные данные).

Оптимизационные модели применяются для определения наилучших (оптимальных), на основе некоторого критерия, параметров моделируемого объекта или способов управления этим объектом. Оптимизационные модели строятся с помощью одной и ли нескольких дескриптивных моделей и имеют несколько критериев определения оптимальности. На область значений входных параметров могут быть наложены ограничения в виде равенств или неравенств, связанных с особенностями рассматриваемого объекта или процесса. Примером оптимизационной модели служит составление рациона питания в определенной диете (в качестве входных данных выступают калорийность продукта, ценовые значения стоимости и т.д.).

Управленческие модели применяются для принятия решений в различных областях целенаправленной деятельности человека, когда из всего множества альтернатив выбирают несколько и общий процесс принятия решения представляет собой последовательность таких альтернатив. Например, выбор доклада для поощрения из нескольких подготовленных студентами. Сложность задачи состоит как в неопределенности о входных данных (самостоятельно подготовлен доклад или использован чей-то труд), так и целей (научность работы и ее структура, уровень изложения и уровень подготовки студента, результаты эксперимента и полученные выводы). Так как оптимальность принятого решения в одной и той же ситуации может трактоваться различным образом, то вид критерия оптимальности в управленческих моделях заранее не фиксируется. Методы формирования критериев оптимальности в зависимости от вида неопределенности рассматриваются в теории выбора и принятия решений, базирующейся на теории игр и исследовании операций.

8. По методу исследования различают аналитические, численные и имитационные модели. Аналитической моделью называют такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат. Численная модель характеризуется зависимостью, которая допускает только частные численные решения для конкретных начальных условий и количественных параметров модели. Имитационная модель – это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использования имеющихся математических методов аналитического и численного решения, но позволяют имитировать процесс функционирования системы и фиксировать интересующие характеристики . Далее будут более подробно рассмотрены некоторые аналитические и имитационные модели, изучение именно этих видов моделей связано со спецификой профессиональной деятельности студентов указанного направления подготовки.

1.4. Графическое представление математических моделей

В математике формы связи между величинами могут быть представлены уравнениями вида независимая переменная (аргумент), y – зависимая переменная (функция). В теории математического моделирования независимую переменную называют фактором, зависимую – откликом. Причем в зависимости от области построения математической модели терминология несколько видоизменяется. Некоторые примеры определений фактора и отклика, в зависимости от области исследования, приведены в таблице 1.

Таблица 1. Некоторые определения понятий «фактор» и «отклик»

Представляя графически математическую модель, мы будем считать факторы и отклики переменными величинами, значения которых принадлежат множеству действительных чисел.

Графическим представлением математической модели являетсянекоторая поверхность отклика, соответствующая расположению точек в k- мерном факторном пространстве Х . Наглядно можно представить себе только одномерную и двухмерную поверхности отклика. В первом случае это множество точек на действительной плоскости, а во втором – множество точек, образующих поверхность в пространстве (для изображения таких точек удобно применять линии уровня – способ изображения рельефа поверхности пространства, построенного в двумерном факторном пространстве Х (Рис. 8).

Область, в которой определена поверхность отклика, называется областью определения Х * . Эта область составляет, как правило, лишь часть полного факторного пространства Х (Х* Ì Х ) и выделяется с помощью ограничений, наложенных на управляющие переменные x i , записанных в виде равенств:

x i = C i , i = 1,…, m ;

f j (x ) = C j , j = 1,…, l

или неравенств:

x i min £ x i £ x i max , i = 1,…, k ;

f j (x ) £ C j , j = 1,…, n ,

При этом функции f j (x ) могут зависеть как одновременно от всех переменных, так и от некоторой их части.

Ограничения типа неравенств характеризуют или физические ограничения на процессы в изучаемом объекте (например, ограничения температуры), или технические ограничения, связанные с условиями работы объекта (например, предельная скорость резания, ограничения по запасам сырья).

Возможности исследования моделей существенно зависят от свойств (рельефа) поверхности отклика, в частности, от количества имеющихся на ней «вершин» и ее контрастности. Количество вершин (впадин) определяет модальность поверхности отклика. Если в области определения на поверхности отклика имеется одна вершина (впадина), модель называется унимодальной .

Характер изменения функции при этом может быть различным (Рис. 9).

Модель может иметь точки разрыва первого рода (Рис. 9 (а)), точки разрыва второго рода (Рис. 9(б)). На рисунке 9(в) показана непрерывно-дифференцируемая унимодальная модель.

Для всех трех случаев, представленных на рисунке 9, выполняется общее требование унимодальности:

если W(x*) – экстремум W, то из условия х 1 < x 2 < x* (x 1 > x 2 > x*) следует W(x 1) < W(x 2) < W(x*) , если экстремум – максимум, или W(x 1) > W(x 2) > W(x*) , если экстремум – минимум, то есть, по мере удаления от экстремальной точки значение функции W(x) непрерывно уменьшается (увеличивается).

Наряду с унимодальными рассматривают полимодальные модели (Рис.10).

Другим важным свойством поверхности отклика является ее контрастность, показывающая чувствительность результирующей функции к изменению факторов. Контрастность характеризуется величинами производных. Продемонстрируем характеристики контрастности на примере двумерной поверхности отклика (Рис. 11).

Точка а расположена на «склоне», характеризующем равную контрастность по всем переменным х i (i =1,2), точка b расположена в «овраге», в котором различная контрастность по различным переменным (имеем плохую обусловленность функции), точка с расположена на «плато», на котором низкая контрастность по всем переменным х i говорит о близости экстремума.

1.5. Основные методы построения математических моделей

Приведем классификацию методов формализованного представления моделируемых систем Волковой В.Н. и Денисова А.А.. Авторами выделены аналитические, статистические, теоретико-множественные, лингвистические, логические, графические методы. Основная терминология, примеры теорий, развивающихся на базе описанных классов методов, а также сфера и возможности их применения предложены в приложении 1.

В практике моделирования систем наибольшее распространение получили аналитические и статистические методы.

1) Аналитические методы построения математических моделей.

Основу терминологического аппарата аналитических методов построения математических моделей составляют понятия классической математики (формула, функция, уравнение и система уравнений, неравенство, производная, интеграл и т.д.). Для этих методов характерна четкость и обоснованность терминологии с использованием языка классической математики.

На основе аналитических представлений возникли и получили развитие такие математические теории, как классический математический анализ (например, методы исследования функций), так и современные основы математического программирования и теории игр. К тому же, математическое программирование (линейное, нелинейное, динамическое, целочисленное и т.д.) содержит как средства постановки задачи, так и расширяет возможности доказательства адекватности модели, в отличие от ряда других направлений математики. Идеи оптимального математического программирования для решения экономических (в частности, решения задачи оптимального раскроя листа фанеры) задач были предложены Л.В. Канторовичем.

Поясним особенности метода на примере.

Пример. Предположим, что для производства двух видов продукций А и В нужно использовать сырьё трёх видов. При этом на изготовление единицы продукции вида А расходуется 4ед. сырья первого вида, 2 ед. 2-го и 3ед. 3-го вида. На изготовление единицы продукции вида В расходуется 2ед. сырья 1-го вида, 5 ед. 2-го вида и 4 ед. 3-го вида сырья. На складе фабрики имеется 35 ед. сырья 1-го вида, 43 – 2-го, 40 – 3-го вида. От реализации единицы продукции вида А фабрика имеет прибыль 5 тыс. руб., а от реализации единицы продукции вида В прибыль составляет 9 тыс. руб. Необходимо составить математическую модель задачи, в которой предусматривается получение максимальной прибыли.

Нормы расхода сырья каждого вида на изготовление единицы данного вида продукции приведены в таблице. В ней же указаны прибыль от реализации каждого вида продукции и общее количества сырья данного вида, которое может быть использовано предприятием.

Обозначим через х 1 и х 2 объем выпускаемой продукции видов А и В соответственно. Затраты материала первого сорта на план составят 4х 1 + 2х 2 , и они не должны превосходить запасов, т.е. 35 кг:

4х 1 + 2х 2 35.

Аналогичны ограничения по материалу второго сорта:

2х 1 + 5х 2 43,

и по материалу третьего сорта

3х 1 + 4х 2 40.

Прибыль от реализации х 1 единиц продукции А и х 2 единиц продукции В составит z = 5x 1 + 9x 2 (целевая функция).

Получили модель задачи:

Графическое решение задачи приведено на рисунке 11.

Оптимальное (наилучшее, т.е. максимум функции z ) решение задачи – в точке А (решение пояснено в главе 5).

Получили, что х 1 =4, х 2 =7, значение функции z в точке А: .

Таким образом, значение максимальной прибыли равно 83 тыс. руб.

Кроме графического существует еще ряд специальных методов решения задачи (например, симплекс-метод) или применяются пакеты прикладных программ, их реализующих. В зависимости от вида целевой функции различают линейное и нелинейное программирование, в зависимости от характера переменных выделяют целочисленное программирование.

Можно выделить общие черты математического программирования:

1) введение понятия целевой функции и ограничений являются средствами постановки задачи;

2) возможно объединение в одной модели разнородных критериев (разных размерностей, в примере – запасы сырья и прибыль);

3) модель математического программирования допускает выход на границу области допустимых значений переменных;

4) возможность реализации пошагового алгоритма получения результатов (пошаговое приближение к оптимальному решению);

5) наглядность, достигаемая посредством геометрической интерпретацией задачи, помогающая в тех случаях, когда невозможно решить задачу формально.

2) Статистические методы построения математических моделей.

Статистические методы построения математических моделей получили распространение и начали широко применяться с развитием теории вероятностей в 19 веке. В их основе лежат вероятностные закономерности случайных (стохастических) событий, отображающие реальные явления. Термин «стохастические» - уточнение понятия «случайные», указывает на заранее заданные, определенные причины, воздействующие на процесс, а понятие «случайные» характеризуется независимостью от воздействия или отсутствия таких причин.

Статистические закономерности представлены в виде дискретных случайных величин и закономерностей появления их значений или в виде непрерывных зависимостей распределения событий (процессов). Теоретические основы построения стохастических моделей подробно описаны в главе 2.

Контрольные вопросы

1. Сформулируйте основную задачу математического моделирования.

2. Дайте определение математической модели.

3. Перечислите основные недостатки экспериментального подхода в исследовании.

4. Перечислите основные этапы построения модели.

5. Перечислите виды математических моделей.

6. Дайте краткую характеристику видов моделей.

7. Какой вид принимает математическая модель, представленная геометрически?

8. Как задаются математические модели аналитического типа?

Задания

1. Составить математическую модель решения задачи и провести классификацию модели:

1) Определить наибольшую вместимость цилиндрического ведра, поверхность которого (без крышки) равна S.

2) Предприятие обеспечивает регулярных выпуск продукции при безотказной поставке комплектующих от двух смежников. Вероятность отказа в поставке от первого из смежников – , от второго – . Найти вероятность сбоя в работе предприятия.

2. Модель Мальтуса (1798) описывает размножение популяции со скоростью, пропорциональной ее численности. В дискретном виде этот закон представляет собой геометрическую прогрессию: ; или .Закон, записанный в виде дифференциального уравнения, представляет собой модель экспоненциального роста популяции и хорошо описывает рост клеточных популяций в отсутствии какого-либо лимитирования: . Задайте начальные условия и продемонстрируйте работу модели.

Исходной информацией при построении ММ процессов функционирования систем служат данные о назначении и условиях работы исследуемой (проектируемой) системы S. Эта информация определяет основную цель моделирования, требования к ММ, уровень абстрагирования, выбор математической схемы моделирования.

Понятие математическая схема позволяет рассматривать математику не как метод расчёта, а как метод мышления, средства формулирования понятий, что является наиболее важным при переходе от словесного описания к формализованному представлению процесса её функционирования в виде некоторой ММ.

При пользовании мат. схемой в первую очередь исследователя системы должен интересовать вопрос об адекватности отображения в виде конкретных схем реальных процессов в исследуемой системе, а не возможность получения ответа (результата решения) на конкретный вопрос исследования.

Например, представление процесса функционирования ИВС коллективного пользования в виде сети схем массового обслуживания даёт возможность хорошо описать процессы, происходящие в системе, но при сложных законах входящих потоков и потоков обслуживания не даёт возможности получения результатов в явном виде.

Математическую схему можно определить как звено при переходе от содержательного к формализованному описанию процесса функционирования системы с учётом воздействия внешней среды. Т.е. имеет место цепочка: описательная модель - математическая схема - имитационная модель.

Каждая конкретная система Sхарактеризуется набором свойств, под которыми понимаются величины, отображающие поведение моделируемого объекта (реальной системы) и учитываются условия её функционирования во взаимодействии с внешней средой (системой) Е.

При построении ММ системы Sнеобходимо решить вопрос о её полноте. Полнота моделирования регулируется, в основном, выбором границ "СистемаS- среда Е". Также должна быть решена задача упрощения ММ, которая помогает выделить основные свойства системы, отбросив второстепенные в плане цели моделирования.

ММ объекта моделирования, т.е. системы Sможно представить в виде множества величин, описывающих процесс функционирования реальной системы и образующих в общем случае следующие подмножества:

Совокупность Х - входных воздействий на Sх i Х, i=1…n x ;

Совокупность воздействий внешней средыv l V, l=1…n v ;

Совокупность внутренних (собственных) параметров системыh k H, k=1…n h ;

Совокупность выходных характеристик системы y j Y, j=1…n y .

В перечисленных множествах можно выделить управляемые и неуправляемые величины. В общем случае X, V, H, Y не пересекаемые множества, содержат как детерминированные так и стохастические составляющие. Входные воздействия Е и внутренние параметрыSявляютсянезависимыми (экзогенными) переменными , Выходные характеристики -зависимые переменные (эндогенные) . Процесс функционированияSописывается операторомF S:

(1)

Выходная траектория.F S - закон функционированияS.F S может быть функция, функционал, логические условия, алгоритм, таблица или словесное описание правил.

Алгоритм функционирования A S - метод получения выходных характеристикс учётом входных воздействийОчевидно один и тот жеF S может быть реализован различными способами, т.е. с помощью множества различныхA S .

Соотношение (1) является математическим описанием поведения объекта Sмоделирования во времениt, т.е. отражает егодинамические свойства . (1) - это динамическая модель системыS. Для статических условий ММ есть отображенияX, V, H вY, т.е.(2)

Соотношения (1), (2) могут быть заданы формулами, таблицами и т.д.

Также соотношения в ряде случаев могут быть получены через свойства системы в конкретные моменты времени, называемые состояниями.

Состояния системы Sхарактеризуются векторами:

и, гдев моментt l (t 0 , T)

в моментt ll (t 0 , T) и т.д. к=1…n Z .

Z 1 (t), Z 2 (t)… Z k (t)- это координаты точки в к-мерном фазовом пространстве. Каждой реализации процесса будет соответствовать некоторая фазовая траектория.

Совокупность всех возможных значений состояний {}называется пространством состояний объекта моделированияZ, причёмz k Z.

Состояние системы Sв интервале времениt 0 , гдевходными, внутренними параметрамии воздействиями внешней среды, которые имели место за промежуток времениt * - t 0 c помощью 2-х векторных уравнений:

; (3)

иначе: . (5)

Время в мод. Sможет рассматриваться на интервале моделирования (t 0 , T) как непрер., так и дискретное, т.е. квантованное на отрезке длин.t.

Таким образом под ММ объекта понимаем конечное множество переменных {}вместе с математическими связями между ними и характеристиками.

Моделирование называется детерминированным, если операторы F, Ф детерминированные, т.е. для конкретного входа выход детерминированный. Детерминированное моделирование - частный случай стохастического моделирования. В практике моделирование объектов в области системного анализа на первичных этапах исследования рациональнее использовать типовые математические схемы: диф. уравнения, конечные и вероятностные автоматы, СМО и т.д.

Не облад. такой степенью общности, как модели (3), (4), типовые математические схемы имеют преимущество простоты и наглядности, но при существенном сужении возможности применения.

В качестве детерминированных моделей, когда при исследовании случайный факт не учитывается, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные и др. уравнения, а для представления систем, функционирующих в дискретном времени - конечные автоматы и конечно разностные схемы.

В начале стохастических моделей (при учёте случайного фактора) для представления систем с дискретным временем используются вероятностные автоматы, а для представления систем с непрерывным временем - системы массового обслуживания (СМО). Большое практическое значение при исследовании сложных индивидуальных управленческих систем, к которым относятся АСУ, имеют так называемые агрегативные модели.

Aгрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивая взаимодействие частей.

16 Математические схемы моделирования систем.

Основные подходы к построению математических моделей системы. Непрерывно-детерминированные модели. Дискретно-детерминированные модели. Дискретно-стохастические модели. Непрерывно-стохастические модели. Сетевые модели. Комбинированные модели.

Основные подходы к построению математических моделей системы.

Исходной информацией при построении математических моделей процессов функционирования систем служат данные о назначении и условиях работы исследуемой (проектируемой) системы S.

Математические схемы

Отображаются реальные процессы в виде конкретных схем. Мат. схемы – переход от содержательного описания к формальному описанию системы с учетом воздействия окружающей среды.

Формальная модель объекта

Модель объекта моделирования,

т. е. системы S, можно представить в виде множества величин,

описывающих процесс функционирования реальной системы и образующих

в общем случае следующие подмножества:

· совокупность входных воздействий на систему

х i ,еХ,(e -символ принадлежит) i =1; nx

· совокупность воздействий внешней среды

v l e V l=1;nv

· совокупность внутренних (собственных) параметров системы

hkeH k=1;nh

· совокупность выходных характеристик системы

yJeY j=1;ny

Можно выделить управляемые и неуправляемые переменные.

При моделировании систем входные воздействия, воздействия внешней среды и внутренние параметры содержат и детерминированные и стохастические составляющие.

входные воздействия, воздействия внешней среды Е и внутренние параметры системы являются независимыми (экзогенными) переменными.


Процесс функционирования системы S описывается во времени оператором Fs, который в общем случае преобразует экзогенные переменные в эндогенные в соответствии с соотношениями вида:

y (t)=Fs(x ,v, h,t) – все с ве k торами.

Закон функционирования системы Fs может быть задан в виде функции, функционала, логических условий, в алгоритмической и табличной формах или в виде словесного правила соответствия.

Понятие алгоритма функционирования As - метод получения выходных характеристик с учетом входных воздействий, воздействий внешней среды и собственных параметров системы.

Также вводятся состояния системы – свойства системы в конкретные моменты времени.

Совокупность всех возможных значений состояний составляют пространство состояний объекта.

Таким образом, цепочка уравнений объекта «вход - состояния - выход» позволяет определить характеристики системы:

Таким образом, под математической моделью объекта (реальной системы) понимают конечное подмножество переменных {х (t),v (t), h (t)} вместе с математическими связями между ними и характеристиками у (t).

Типовые схемы

На первоначальных этапах исследования используются типовые схемы: дифференциальные уравнения, конечные и вероятностные автоматы, системы массового обслуживания, сети Петри и т. д.

В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функционирующих в дискретном времени,- конечные автоматы и конечно-разностные схемы.

В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным временем используются вероятностные автоматы, а для представления системы с непрерывным временем - системы массового обслуживания и т. д.

Таким образом, при построении математических моделей процессов функционирования систем можно выделить следующие основные подходы: непрерывно-детерминированный (например, дифференциальные уравнения); дискретно-детерминированный (конечные автоматы); дискретно-стохастический (вероятностные автоматы); непрерывно-стохастический (системы массового обслуживания); обобщенный, или универсальный (агрегативные системы).

Непрерывно-детерминированные модели

Рассмотрим особенности непрерывно детерминированного подхода на примере, используя в качестве Мат. моделей дифференциальные уравнения .

Дифференциальными уравнениями называются такие уравнения, в которых неизвестными будут функции одной переменной или нескольких переменных, причём в уравнение входят не только их функции но их производные различных порядков.

Если неизвестные - функции многих переменных, то уравнения называются - уравнения в частных производных. Если неизвестные функции одной независимой переменной, то имеют место обыкновенные дифференциальные уравнения.

Математическое соотношение для детерминированных систем в общем виде:

Дискретно-детерминированные модели.

ДДМ являются предметом рассмотрения теории автоматов (ТА) . ТА - раздел теоретической кибернетики, изучающей устройства, перерабатывающие дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени.


Конечным автоматом называется автомат, у которого множество внутренних состояний и входных сигналов (а следовательно, и множество выходных сигналов) являются конечными множествами.

Конечный автомат имеет множество внутренних состояний и входных сигналов, являющихся конечными множествами. Автомат задаётся F- схемой: F=,

где z, x,y - соответственно конечные множества входных, выходных сигналов (алфавитов) и конечное множество внутренних состояний (алфавита). z0ÎZ - начальное состояние; j(z, x) - функция переходов; y(z, x) - функция выхода.

Автомат функционирует в дискретном автоматном времени, моментами которого являются такты, т. е. примыкающие друг к другу равные интервалы времени, каждому из которых соответствуют постоянные значения входного, выходного сигнала и внутреннего состояния. Абстрактный автомат имеет один входной и один выходной каналы.

Для задания F - автомата необходимо описать все элементы множества F=, т. е. входной, внутренний и выходной алфавиты, а также функции переходов и выходов. Для задания работы F - автоматов наиболее часто используются табличный, графический и матричный способ.

В табличном способе задания используется таблицы переходов и выходов, строки которых соответствуют входным сигналам автомата, а столбцы - его состояниям.

Описание работы F - автомата Мили таблицами переходов j и выходов y иллюстрируется таблицей (1), а описание F - автомата Мура - таблицей переходов (2).

Таблица 1

Переходы

…………………………………………………………

…………………………………………………………

Таблица 2

…………………………………………………………

Примеры табличного способа задания F - автомата Мили F1 с тремя состояниями, двумя входными и двумя выходными сигналами приведены в таблице 3, а для F - автомата Мура F2 - в таблице 4.

Таблица 3

Переходы

Таблица 4

При другом способе задания конечного автомата используется понятие направленного графа. Граф автомата представляет собой набор вершин, соответствующих различным состояниям автомата и соединяющих вершин дуг графа, соответствующих тем или иным переходам автомата. Если входной сигнал xk вызывает переход из состояния zi в состояние zj, то на графе автомата дуга, соединяющая вершину zi с вершиной zj обозначается xk. Для того, чтобы задать функцию переходов, дуги графа необходимо отметить соответствующими выходными сигналами.

Рис. 1. Графы автоматов Мили (а) и Мура (б).

При решении задач моделирования часто более удобной формой является матричное задание конечного автомата. При этом матрица соединений автомата есть квадратная матрица С=|| cij ||, строки которой соответствуют исходным состояниям, а столбцы - состояниям перехода.

Пример. Для рассмотренного ранее автомата Мура F2 запишем матрицу состояний и вектор выходов:

;

Дискретно-стохастические модели

Пусть Ф – множество всевозможных пар вида (zk, yi), где уi – элемент выходного

подмножества Y. Потребуем, чтобы любой элемент множества G индуцировал

на множестве Ф некоторый закон распределения следующего вида:

Элементы из Ф (z1, y2) (z1, y2zk, yJ-1) (zK, yJ)

(xi, zs) b11 b1bK(J-1) bKJ

Информационные сети" href="/text/category/informatcionnie_seti/" rel="bookmark">обработку информации ЭВМ от удаленных терминалов и т. д.

При этом характерным для

работы таких объектов является случайное появление заявок (требований) на

обслуживание и завершение обслуживания в случайные моменты времени,

т. е. стохастический характер процесса их функционирования.

Под СМО понимают динамическую систему, предназначенную для эффективного обслуживания случайного потока заявок при ограниченных ресурсах системы. Обобщённая структура СМО приведена на рисунке 3.1.

Рис. 3.1. Схема СМО.

Поступающие на вход СМО однородные заявки в зависимости от порождающей причины делятся на типы, интенсивность потока заявок типа i (i=1…M) обозначено li. Совокупность заявок всех типов - входящий поток СМО.

Обслуживание заявок выполняется m каналами.

Различают универсальные и специализированные каналы обслуживания. Для универсального канала типа j считается известными функции распределения Fji(t) длительности обслуживания заявок произвольного типа. Для специализированных каналов функции распределения длительности обслуживания каналов заявок некоторых типов являются неопределёнными, назначение этих заявок на данный канал.

Q - схемы можно исследовать аналитически и имитационными моделями. Последнее обеспечивает большую универсальность.

Рассмотрим понятие массового обслуживания.

В любом элементарном акте обслуживания можно выделить две основные составляющие: ожидание обслуживания заявкой и собственно обслуживание заявки. Это можно отобразить в виде некоторого i-ого прибора обслуживания Пi, состоящего из накопителя заявок, в котором может находиться одновременно li=0…LiH заявок, где LiH - ёмкость i-ого накопителя, и канала обслуживания заявок, ki.

Рис. 3.2. Схема прибора СМО

На каждый элемент прибора обслуживания Пi поступают потоки событий: в накопитель Hi поток заявок wi, на канал ki - поток обслуживания ui.

Потоком событий (ПС) называется последовательность событий, происходящих одно за другим в какие-то случайные моменты времени. Различают потоки однородных и неоднородных событий. Однородный ПС характеризуется только моментами поступления этих событий (вызывающими моментами) и задаётся последовательностью {tn}={0£t1£t2…£tn£…}, где tn - момент поступления n - ого события - неотрицательное вещественное число. ОПС может быть также задан в виде последовательности промежутков времени между n-ым и n-1-ым событиями {tn}.

Неоднородным ПС называется последовательность {tn, fn} , где tn - вызывающие моменты; fn- набор признаков события. Например, может быть задана принадлежность к тому или иному источнику заявок, наличие приоритета, возможность обслуживания тем или иным типом канала и т. п.

Заявки, обслуженные каналом ki и заявки, покинувшие прибор Пi по различным причинам не обслуженными, образуют выходной поток yiÎY.

Процесс функционирования прибора обслуживания Пi можно представить как процесс изменения состояний его элементов во времени Zi(t). Переход в новое состояние для Пi означает изменение кол-ва заявок, которые в нём находятся (в канале ki и накопителе Hi). Т. о. вектор состояний для Пi имеет вид: , где - состояния накопителя, (https://pandia.ru/text/78/362/images/image010_20.gif" width="24 height=28" height="28">=1- в накопителе одна заявка…, =- накопитель занят полностью; - состояние канала ki (=0 - канал свободен, =1 канал занят).

Q-схемы реальных объектов образуются композицией многих элементарных приборов обслуживания Пi. Если ki различных приборов обслуживания соединены параллельно, то имеет место многоканальное обслуживание (многоканальная Q-схема), а если приборы Пi и их параллельные композиции соединены последовательно, то имеет место многофазное обслуживание (многофазная Q-схема).

Для задания Q-схемы также необходимо описать алгоритмы её функционирования, которые определяют правила поведения заявок в различных неоднозначных ситуациях.

В зависимости от места возникновения таких ситуаций различают алгоритмы (дисциплины) ожидания заявок в накопителе Нi и обслуживания заявок каналом ki. Неоднородность потока заявок учитывается с помощью введения класса приоритетов – относительные и абсолютные приоритеты.

Т. о. Q‑схема, описывающая процесс функционирования СМО любой сложности однозначно задаётся в виде набора множеств: Q = .

Сетевые модели.

Для формального описания структуры и взаимодействия параллельных систем и процессов, а также анализа причинно-следственных связей в сложных системах используются сети Петри (англ. Petri Nets), называемые N-схемами.

Формально N-схема задается четверкой вида

N = ,

где В – конечное множество символов, называемых позициями, B ≠ O;

D – конечное множество символов, называемых переходами D ≠ O,

B ∩ D ≠ O; I – входная функция (прямая функция инцидентности)

I: B × D → {0, 1}; О – выходная функция (обратная функция инцидентности),

О: B × D → {0, 1}. Таким образом входная функция I отображает переход dj в

множество входных позиций bj I(dj), а выходная функция O отображает

переход dj в множество выходных позиций bj О(dj). Для каждого перехода

dj https://pandia.ru/text/78/362/images/image013_14.gif" width="13" height="13"> B | I(bi, dj) = 1 },

O(dj) = { bi B | O(dj, bi) = 1 },

i = 1,n; j = 1,m; n = | B |, m = | D |.

Аналогично для каждой позиции bi B вводятся определения

множество входных переходов позиции I(bi) и выходных переходов

позиции O(bi):

I(bi) = { dj D | I(dj, bi,) = 1 },

O(bi) = { dj D | O(bi, dj) = 1 }.

Сеть Петри представляет собой двудольный ориентированный граф, состоящий из вершин двух типов - позиций и переходов, соединённых между собой дугами, вершины одного типа не могут быть соединены непосредственно.

Пример сети Петри. Белыми кружками обозначены позиции, полосками - переходы, чёрными кружками - метки.

Ориентировочные дуги соединяют позиции и переходы, причем каждая дуга направлена от элемента одного множества (позиции или перехода) к элементу другого множества

(переходу или позиции). Граф N-схемы является мультиграфом, так как он

допускает существование кратных дуг от одной вершины к другой.

Декомпозиция" href="/text/category/dekompozitciya/" rel="bookmark">декомпозиции сложная система представляется в виде многоуровневой конструкции из взаимосвязанных элементов, объединенных в подсистемы различных уровней.

В качестве элемента А-схемы выступает агрегат, а связь между агрегатами (внутри системы S и с внешней средой Е) осуществляется с помощью оператора сопряжения R.

Любой агрегат характеризуется следующими множествами: моментов времени T, входных X и выходных Y сигналов, состояний Z в каждый момент времени t. Состояние агрегата в момент времени tT обозначается как z(t) Z,

а входные и выходные сигналы как х(t) X и y(t) Y соответственно.

Будем полагать, что переход агрегата из состояния z(t1) в состояние z(t2)≠z(t1) происходит за малый интервал времени, т. е. имеет место скачок δz.

Переходы агрегата из состояния z(t1) в z(t2) определяются собственными (внутренними) параметрами самого агрегата h(t) H и входными сигналами x(t) X.

В начальный момент времени t0 состояния z имеют значения, равные z0, т. е. z0=z(t0), задаваемые законом распределения процесса z(t) в момент времени t0, а именно J. Предположим, что процесс функционирования агрегата в случае воздействия входного сигнала xn описывается случайным оператором V. Тогда в момент поступления в агрегат tnT входного сигнала

xn можно определить состояние

z(tn + 0) = V.

Обозначим полуинтервал времени t1 < t ≤ t2 как (t1, t2], а полуинтервал

t1 ≤ t < t2 как .

Совокупность случайных операторов V и U рассматривается как оператор переходов агрегата в новые состояния. При этом процесс функционирования агрегата состоит из скачков состояний δz в моменты поступления входных сигналов х (оператор V) и изменений состояний между этими моментами tn и tn+1 (оператор U). На оператор U не накладывается никаких ограничений, поэтому допустимы скачки состояний δz в моменты времени, не являющиеся моментами поступления входных сигналов x. В дальнейшем моменты скачков δz будем называть особыми моментами времени tδ, а состояния z(tδ) – особыми состояниями А-схемы. Для описания скачков состояний δz в особые моменты времени tδ будем использовать случайный оператор W, представляющий собой частный случай оператора U, т. е.

z(tδ + 0) = W.

В множестве состояний Z выделяется такое подмножество Z(Y), что если z(tδ) достигает Z(Y), то это состояние является моментом выдачи выходного сигнала, определяемого оператором выходов

у = G.

Таким образом, под агрегатом будем понимать любой объект, определяемый упорядоченной совокупностью рассмотренных множеств T, X, Y, Z, Z(Y), H и случайных операторов V, U, W, G.

Последовательность входных сигналов, расположенных в порядке их поступления в А-схему, будем называть входным сообщением или x-сообщением. Последовательность выходных сигналов, упорядоченную относительно времени выдачи, назовем выходным сообщением или y-сообщением.

ЕСЛИ КРАТКО

Непрерывно-детерминированные модели (Д-схемы)

Применяются для исследования систем, функционирующих в непрерывном времени. Для описания таких систем в основном используются дифференциальные, интегральные, интегро-дифференциальные уравнения. В обыкновенных дифференциальных уравнениях рассматривается функция только одной независимой переменной, а в уравнениях в частных производных - функции нескольких переменных.

В качестве примера применения Д-моделей можно привести исследование работы механического маятника или электрического колебательного контура. Техническую основу Д-моделей составляют аналоговые вычислительные машины (АВМ) или бурно развивающиеся в настоящее время гибридные вычислительные машины (ГВМ). Как известно, основной принцип исследований на ЭВМ состоит в том, что по заданным уравнениям исследователь (пользователь АВМ) собирает схему из отдельных типовых узлов - операционных усилителей с включением цепей масштабирования, демпфирования, аппроксимации и т. п.

Структура АВМ изменяется в соответствии с видом воспроизводимых уравнений.

В цифровой ЭВМ структура остается неизменной, а изменяется последовательность работы ее узлов в соответствии с заложенной в нее программой. Сравнение АВМ и ЦВМ наглядно показывает разницу между имитационным и статистическим моделированием.

АВМ реализует имитационную модель, но, как правило, не использует принципы статистического моделировании. В ЦВМ большинство имитационных моделей базируется на исследовании случайных чисел, процессов, т. е. на статистическом моделировании. Непрерывно-детерминированные модели широко используются в машиностроении при исследовании систем автоматического управления, выборе амортизирующих систем, выявлении резонансных явлений и колебаний в технике
и т. п.

Дискретно-детерминированные модели (F-схемы)

Оперируют с дискретным временем. Эти модели являются основой для исследования работы чрезвычайно важного и распространенного сегодня класса систем дискретных автоматов. С целью их исследования разработан самостоятельный математический аппарат теории автоматов. На основе этой теории система рассматривается как автомат, перерабатывающий дискретную информацию и меняющий, в зависимости от результатов ее переработки, свои внутренние состояния.

На этой модели основаны принципы минимизации числа элементов и узлов в схеме, устройстве, оптимизация устройства в целом и последовательности работы его узлов. Наряду с электронными схемами , ярким представителем автоматов, описываемых данной моделью, является робот, управляющий (по заданной программе) технологическими процессами в заданной детерминированной последовательности.

Станок с числовым программным управлением также описывается данной моделью. Выбор последовательности обработки деталей на этом станке осуществляется настройкой узла управления (контроллера), вырабатывающего сигналы управления в определенные моменты времени / 4 /.

Теория автоматов использует математический аппарат булевых функций, оперирующих с двумя возможными значениями сигналов 0 и 1.

Автоматы разделяются на автоматы без памяти, автоматы с памятью. Описание их работы производится с помощью таблиц, матриц, графов, отображающих переходы автомата из одного состояния в другое. Аналитические оценки при любом виде описания работы автомата весьма громоздки и уже при сравнительно небольшом числе элементов, узлов, образующих устройство, практически невыполнимы. Поэтому исследование сложных схем автоматов, к которым, несомненно, относятся и робототехнические устройства, производится с применением имитационного моделирования.

Дискретно-стохастические модели (P-схемы)

Применяются при исследовании работы вероятностных автоматов. В автоматах этого типа переходы из одного состояния в другое осуществляются под воздействием внешних сигналов и с учетом внутреннего состояния автомата. Однако в отличие от Г-автоматов, эти перехода не строго детерминированы, а могут осуществляться с определенными вероятностями.

Пример такой модели представляет дискретная марковская цепь с конечным множеством состояний. Анализ F-схем основан на обработке и преобразовании матриц вероятностей переходов и анализе вероятностных графов. Уже для анализа сравнительно простых устройств, поведение которых описывается F-схемами, целесообразно применение имитационного моделирования. Пример такого моделирования приведен в пункте 2.4.

Непрерывно-стохастические модели (Q-схемы)

Используются при анализе широкого класса систем, рассматриваемых как системы массового обслуживания. В качестве процесса обслуживания могут быть представлены различные по своей физической природе процессы: потоки поставок продукции предприятию, потоки комплектующих заказных деталей и изделий, потоки деталей на сборочном конвейере, потоки управляющих воздействий от центра управления АСУ на рабочие места и обратные заявки на обработку информации в ЭВМ и т. д.

Как правило, эти потоки зависят от многих факторов и конкретных ситуаций. Поэтому в большинстве случаев эти потоки случайны во времени с возможностью изменений в любые моменты. Анализ таких схем производится на основе математического аппарата теории массового обслуживания. К ним относится непрерывная марковская цепь. Несмотря на значительные успехи, достигнутые в разработке аналитических методов, теория массового обслуживания, анализ Q-схем аналитическими методами может быть проведен лишь при значительных упрощающих допущениях и предположениях. Детальное исследование большинства этих схем, тем более таких сложных, как АСУТП, робототехнические системы, может быть проведено только с помощью имитационного моделирования.

Обобщенные модели (А-схемы)

Основаны на описании процессов функционирования любых систем на базе агрегативного метода. При агрегативном описании система разбивается на отдельные подсистемы, которые могут считаться удобными для математического описания. В результате такого разбиения (декомпозиции) сложная система представляется в виде многоуровневой системы, отдельные уровни (агрегаты) которой поддаются анализу. На основе анализа отдельных агрегатов и с учетом законов взаимосвязей этих агрегатов удается провести комплексное исследование всей системы.

, Яковлев систем. 4-е изд. – М.: Высшая школа, 2005. – С. 45-82.

Математические схемы моделирования систем

Достоинства и недостатки имитационного моделирования

Основные достоинства имитационного моделирования при исследовании сложных систем:

· возможность исследовать особенности процесса функционирования системы S в любых условиях;

· за счет применения ЭВМ существенно сокращается продолжительность испытаний по сравнению с натурным экспериментом;

· результаты натурных испытаний реальной системы или ее частей можно использовать для проведения имитационного моделирования;

· гибкость варьирования структуры, алгоритмов и параметров моделируемой системы при поиске оптимального варианта системы;

· для сложных систем – это единственный практически реализуемый метод исследования процесса функционирования систем.

Основные недостатки имитационного моделирования:

· для полного анализа характеристик процесса функционирования систем и поиска оптимального варианта требуется многократно воспроизводить имитационный эксперимент, варьируя исходные данные задачи;

· большие затраты машинного времени.

Эффективность машинного моделирования. При моделировании необходимо обеспечить максимальную эффективность модели системы. Эффективность обычно определяется как некоторая разность между какими-то показателями ценности результатов, полученных при эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание.

Эффективность имитационного моделирования может оцениваться рядом критериев:

· точностью и достоверностью результатов моделирования,

· временем построения и работы с моделью М ,

· затратой машинных ресурсов (время и память),

· стоимостью разработки и эксплуатации модели.

Наилучшей оценкой эффективности является сравнение полученных результатов с реальными исследованиями. С помощью статистического подхода с определенной степенью точности (в зависимости от числа реализаций машинного эксперимента) получают усредненные характеристики поведения системы.

Суммарные затраты машинного времени складываются из времени по вводу и выводу по каждому алгоритму моделирования, времени на проведение вычислительных операций, с учетом обращения к оперативной памяти и внешним устройствам, а также сложности каждого моделирующего алгоритма и планирования экспериментов.

Математические схемы. Математическая модель – это совокупность математических объектов (чисел, переменных, множеств, векторов, матриц и т.п.) и отношений между ними, адекватно отображающая физические свойства создаваемого технического объекта. Процесс формирования математической модели и использования ее для анализа и синтеза называется математическим моделированием.



При построении математической модели системы необходимо решить вопрос об ее полноте. Полнота модели регулируется, в основном, выбором границы «система S – среда Е ». Также должна быть решена задача упрощения модели, которая помогает выделить в зависимости от цели моделирования основные свойства системы, отбросив второстепенные.

При переходе от содержательного к формальному описанию процесса функционирования системы с учетом воздействия внешней среды применяют математическую схему как звено в цепочке «описательная модель – математическая схема – математическая (аналитическая или (и) имитационная) модель».

Формальная модель объекта. Модель объекта (системы S ) можно представить в виде множества величин, описывающих процесс функционирования реальной системы:

· совокупность входных воздействий на систему

x i = X , i = ;

· совокупность воздействий внешней среды

v j = V , j = ;

· совокупность внутренних (собственных) параметров систем

h k = H, k = ;

· совокупность выходных характеристик системы

y j = Y, j = .

В общем случае x i , v j , h k , y j являются элементами непересекающихся подмножеств и содержат как детерминированные, так и стохастические составляющие.

Входные воздействия, воздействия внешней среды Е и внутренние параметры системы являются независимыми (экзогенными ) переменными, которые в векторной форме имеют соответственно вид (t ) = (x 1 (t ), x 2 (t ), …, x nX (t )); (t ) = (v 1 (t ), v 2 (t ), …, v nV (t )); (t ) = (h 1 (t ), h 2 (t ), …, h nН (t )), а выходные характеристики являются зависимыми (эндогенными ) переменными и в векторной форме имеют вид: (t ) = (у 1 (t ), у 2 (t ), …, у nY (t )). Можно выделить управляемые и неуправляемые переменные.

Процесс функционирования системы S описывается во времени оператором F S , который преобразует экзогенные переменные в эндогенные в соответствии с соотношениями вида

(t ) = F S (,,, t ). (2.1)

Совокупность зависимостей выходных характеристик системы от времени y j (t ) для всех видов j = называется выходной траекторией (t ). Зависимость (2.1) называется законом функционирования системы F S , который задается в виде функции, функционала, логических условий, в алгоритмической, табличной формах или в виде словесного правила соответствия. Алгоритмом функционирования A S называется метод получения выходных характеристик с учетом входных воздействий (t ), воздействий внешней среды (t ) и собственных параметров системы (t ). Один и тот же закон функционирования F S системы S может быть реализован различными способами, т.е. с помощью множества различных алгоритмов функционирования A S .

Математические модели называются динамическими (2.1), если математические соотношения описывают поведение объекта (системы) моделирования во времени t , т.е. отражают динамические свойства.

Для статических моделей математическая модель представляет собой отображение между двумя подмножествами свойств моделируемого объекта Y и {X, V, H } в определенный момент, что в векторной форме может быть записано как

= f (, , ). (2.2)

Соотношения (2.1) и (2.2) могут быть заданы различными способами: аналитически (с помощью формул), графически, таблично и т.д. Эти соотношения могут быть получены через свойства системы S в конкретные моменты времени, называемые состояниями. Состояние системы S характеризуется векторами

" = (z" 1, z" 2, …, z" k ) и "" = (z"" 1 , z"" 2 , …, z"" k ),

где z" 1 = z 1 (t" ), z" 2 = z 2 (t" ), …, z" k = z k (t" ) в момент t" Î (t 0 , T ); z"" 1 = z 1 (t"" ), z"" 2 = z 2 (t"" ), …, z"" k = z k (t"" ) в момент t"" Î (t 0 , T ) и т.д. k = .

Если рассматривать процесс функционирования системы S как последовательную смену состояний z 1 (t ), z 2 (t ), …, z k (t ), то они могут быть интерпретированы как координаты точки в k -мерном фазовом пространстве . Причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех возможных значений состояний {} называется пространством состояний объекта моделирования Z , причем
z k Î Z .

Состояния системы S в момент времени t 0 < t* £ T полностью определяются начальными условиями 0 = (z 0 1 , z 0 2 , …, z 0 k ) [где z 0 1 = z 1 (t 0),
z 0 2 = z 2 (t 0), …, z 0 k = z k (t 0)], входными воздействиями (t ), внутренними параметрами (t ) и воздействиями внешней среды (t ), которые имели место в промежутке времени t* t 0 , c помощью двух векторных уравнений

(t ) = Ф( 0 , , , , t ); (2.3)

(t ) = F(, t ). (2.4)

Первое уравнение по начальному состоянию 0 и экзогенным переменным , , определяет вектор-функцию (t ), а второе по полученному значению состояний (t ) – эндогенные переменные на выходе системы (t ). Таким образом, цепочка уравнений объекта «вход – состояния – выход» позволяет определить характеристики системы

(t ) = F[Ф( 0 , , , , t )]. (2.5)

В общем случае время в модели системы S может рассматриваться на интервале моделирования (0, Т ) как непрерывное, так и дискретное, т.е. квантованное на отрезки длиной Dt временных единиц каждый, когда T = m Dt , где m = – число интервалов дискретизации.

Таким образом, под математической моделью объекта (реальной системы) понимают конечное подмножество переменных {(t ), (t ), (t )} вместе с математическими связями между ними и характеристиками (t ).

Если математическое описание объекта моделирования не содержит элементов случайности или они не учитываются, т.е. если можно считать, что в этом случае стохастические воздействия внешней среды (t ) и стохастические внутренние параметры (t ) отсутствуют, то модель называется детерминированной в том смысле, что характеристики однозначно определяются детерминированными входными воздействиями

(t ) = f (, t ). (2.6)

Очевидно, что детерминированная модель является частным случаем стохастической модели.

Типовые математические схемы. В практике моделирования объектов в области системотехники и системного анализа на первоначальных этапах исследования системы рациональнее использовать типовые математические схемы : дифференциальные уравнения, конечные и вероятностные автоматы, системы массового обслуживания, сети Петри, агрегативные системы и т.д.

Типовые математические схемы имеют преимущества простоты и наглядности. В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функционирующих в дискретном времени, конечные автоматы и конечно-разностные схемы. В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным временем используются вероятностные автоматы, а для представления систем с непрерывным временем – системы массового обслуживания. Для анализа причинно-следственных связей в сложных системах, где одновременно параллельно протекает несколько процессов, применяют сети Петри. Для описания поведения непрерывных и дискретных, детерминированных и стохастических систем (например АСОИУ) можно применять обобщенный (универсальный) подход на основе агрегативной системы. При агрегативном описании сложный объект (система) расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивающие взаимодействие частей.

Таким образом, при построении математических моделей процессов функционирования систем можно выделить следующие основные подходы: непрерывно-детерминированный (D -схемы); дискретно-детерминированный (F -схемы); дискретно-стохастический (Р -схемы); непрерывно-стохастический (Q -схемы); сетевой (N -схемы); обобщенный или универсальный (а -схемы).

2.2. Непрерывно-детерминированные модели (D -схемы)

Основные соотношения . Рассмотрим особенности непрерывно-детерминированного подхода на примере использования в качестве математических моделей дифференциальных уравнений. Дифференциальными уравнениями называются такие уравнения, в которых неизвестными будут функции одного или нескольких переменных, причем в уравнение входят не только функции, но и их производные различных порядков. Если неизвестные функции многих переменных, то уравнения называются уравнениями частных производных , иначе при рассмотрении функции одной независимой переменной уравнения называются обыкновенными дифференциальными уравнениями .

Математическое соотношение для детерминированных систем (2.6) в общем виде будет

" (t ) = (, t ); (t 0) = 0 , (2.7)

где " = d /dt , = (y 1 , y 2 , …, y n ) и = (f 1 , f 2 , …, f n ) – n -мерные векторы; (, t ) – вектор-функция, которая определена на некотором (n +1)-мерном (, t ) множестве и является непрерывной.

Математические схемы такого вида называются D-схемами (англ. dynamic), они отражают динамику изучаемой системы, и в качестве независимой переменной, от которой зависят неизвестные искомые функции, обычно служит время t .

В простейшем случае обыкновенное дифференциальное уравнение имеет вид:

y" (t ) = f (y , t ). (2.8)

Рассмотрим простейший пример формализации процесса функционирования двух элементарных схем различной природы: механической S M (колебание маятника, рис.2.1, а ) и электрической S K (колебательный контур, рис.2.1, б ).


Рис. 2.1. Элементарные системы

Процесс малых колебаний маятника описывается обыкновенным дифференциальным уравнением

m M l M 2 (d 2 F (t )/dt 2) + m M gl M F (t ) = 0,

где m M , l M – масса и длина подвеса маятника; g – ускорение свободного падения; F (t ) – угол отклонения маятника в момент времени t .

Из этого уравнения свободного колебания маятника можно найти оценки интересующих характеристик. Например, период колебания маятника

T M = 2p.

Аналогично, процессы в электрическом колебательном контуре описываются обыкновенным дифференциальным уравнением

L K (d 2 q (t )/dt 2) + (q (t )/C K) = 0,

где L K , C K – индуктивность и емкость конденсатора; q (t ) – заряд конденсатора в момент времени t .

Из этого уравнения можно получить различные оценки характеристик процесса в колебательном контуре. Например, период электрических колебаний

T M = 2p.

Очевидно, что введя обозначения h 2 = m M l M 2 = L K , h 1 = 0,
h 0 = m M gl M = 1/C K , F (t ) = q (t ) = z (t ), получим обыкновенное дифференциальное уравнение второго порядка, описывающее поведение этой замкнутой системы:

h 2 (d 2 z (t )/dt 2) + h 1 (dz (t )/dt ) + h 0 z (t ) = 0, (2.9)

где h 0 , h 1 , h 2 – параметры системы; z (t ) – состояние системы в момент
времени t .

Таким образом, поведение этих двух объектов может быть исследовано на основе общей математической модели (2.9). Кроме того, необходимо отметить, что поведение маятника (системы S M) может быть изучено с помощью электрического колебательного контура (системы S К).

Если изучаемая система S (маятник или контур) взаимодействует с внешней средой Е , то появляется входное воздействие x (t ) (внешняя сила для маятника и источник энергии для контура), и непрерывно-детерминированная модель такой системы будет иметь вид:

h 2 (d 2 z (t )/dt 2) + h 1 (dz (t )/dt ) + h 0 z (t ) = x (t ). (2.10)

С точки зрения общей математической модели (см. п. 2.1) x (t ) является входным (управляющим) воздействием, а состояние системы S в данном случае можно рассматривать как выходную характеристику, т.е. выходная переменная совпадает с состоянием системы в данный момент времени y = z .

Возможные приложения D -схемы . Для описания линейных систем управления, как любой динамической системы, неоднородные дифференциальные уравнения имеют постоянные коэффициенты

где , ,…, – неизвестная функция времени и ее производные; и – известные функции.

Используя, например пакет программ VisSim, предназначенный для имитационного моделирования процессов в системах управления, которые можно описать дифференциальными уравнениями, промоделируем решение обыкновенного неоднородного дифференциального уравнения

где – некоторая искомая функция времени на отрезке при нулевых начальных условиях, примем h 3 =1, h 2 =3, h 1 =1, h 0 =3:

Представив заданное уравнение относительно наивысшей из производных, получим уравнение

которое можно промоделировать, используя набор стандартных блоков пакета VisSim: арифметические блоки – Gain (умножение на константу), Summing-Junction (сумматор); блоки интегрирования – Integrator (численное интегрирование), Transfer Function (задание уравнения, представленного в виде передаточной функции); блоки задания сигналов – Const (константа), Step (единичная функция в виде «ступеньки»), Ramp (линейно нарастающий сигнал); блоки-приемники сигналов – Plot (отображение во временной области сигналов, которые анализируются исследователем в ходе моделирования).

На рис. 2.2 изображено графическое представление данного дифференциального уравнения. Входу крайнего левого интегратора соответствует переменная , входу среднего интегратора – , а входу крайнего правого интегратора – . Выход крайнего правого интегратора соответствует переменной y .

Частным случаем динамических систем, описываемых D -схемами, являются системы автоматического управления (САУ ) и регулирования (САР ). Реальный объект представляется в виде двух систем: управляющей и управляемой (объекта управления). Структура многомерной системы автоматического управления общего вида представлена на рис. 2.3, где обозначены эндогенные переменные: (t ) – вектор входных (задающих) воздействий; (t ) – вектор возмущающих воздействий; " (t ) – вектор сигналов ошибки; "" (t ) – вектор управляющих воздействий; экзогенные переменные: (t ) – вектор состояния системы S ; (t ) – вектор выходных переменных, обычно (t ) = (t ).

Рис. 2.2. Графическое представление уравнения

Управляющая система – это совокупность программно-технических средств, обеспечивающих достижение объектом управления определенной цели. Насколько точно объект достигает заданной цели, можно судить (для одномерной системы) по координате состояния y (t ). Разность между заданным y зад (t ) и действительным y (t ) законом изменения управляемой величины есть ошибка управления " (t ) = y зад (t ) – y (t ). Если предписанный закон изменения управляемой величины соответствует закону изменения входного (задающего) воздействия, т.е. x (t ) = y зад (t ), то " (t ) = x (t ) – y (t ).

Системы, для которых ошибки управления " (t ) = 0 во все моменты времени, называются идеальными . На практике реализация идеальных систем невозможна. Задачей системы автоматического управления является изменение переменной y (t ) согласно заданному закону с определенной точностью (с допустимой ошибкой). Параметры системы должны обеспечивать требуемую точность управления, а также устойчивость системы в переходном процессе. Если система устойчива, то анализируют поведение системы во времени, максимальное отклонение регулируемой переменной y (t ) в переходном процессе, время переходного процесса и т.п. Порядок дифференциального уравнения и значение его коэффициентов полностью определяются статическими и динамическими параметрами системы.


Рис. 2.3. Структура системы автоматического управления:

УC – управляющая система; OУ – объект управления

Таким образом, использование D -схем позволяет формализовать процесс функционирования непрерывно детерминированных систем S и оценить их основные характеристики, применяя аналитический или имитационный подход, реализованный в виде соответствующего языка для моделирования непрерывных систем или использующий аналоговые и гибридные средства вычислительной техники.

2.3. Дискретно-детерминированные модели (F -схемы)

Основные соотношения . Рассмотрим особенности дискретно-детерминированного подхода на примере использования в качестве математического аппарата теории автоматов. Система представляется в виде автомата как некоторого устройства с входными и выходными сигналами, перерабатывающего дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени. Конечным автоматом называется автомат, у которого множества внутренних состояний, входных и выходных сигналов являются конечными множествами.

Абстрактно конечный автомат (англ. finite automata) можно представить как математическую схему (F -схему ), характеризующуюся шестью элементами: конечным множеством Х входных сигналов (входным алфавитом); конечным множеством Y выходных сигналов (выходным алфавитом); конечным множеством Z внутренних состояний (внутренним алфавитом или алфавитом состояний); начальным состоянием z 0 , z 0 Î Z ; функцией переходов j(z , x ); функцией выходов y(z , x ). Автомат, задаваемый F -схемой: F = áZ , X , Y , y, j, z 0 ñ, функционирует в дискретном времени, моментами которого являются такты, каждому из которых соответствуют постоянные значения входного и выходного сигналов и внутренние состояния. Обозначим состояние, а также входной и выходной сигналы, соответствующие t -му такту при t = 0, 1, 2, …, через z (t ), x (t ), y (t ). При этом по условию z (0) = z 0 , а z (t Z , x (t X , y (t Y .

Абстрактный конечный автомат имеет один входной и один выходной каналы. В каждый момент t = 0, 1, 2, … дискретного времени F -автомат находится в определенном состоянии z (t ) из множества Z состояний автомата, причем в начальный момент времени t = 0 он всегда находится в начальном состоянии z (0) = z 0 . В момент t , будучи в состоянии z (t ), автомат способен воспринять на входном канале сигнал x (t X и выдать на выходном канале сигнал y (t ) = y[z (t ), x (t )], переходя в состояние z(t +1) = j[z (t ), x (t )], z (t Z , y (t Y . Абстрактный конечный автомат реализует некоторое отображение множества слов входного алфавита X на множество слов выходного
алфавита Y . Другими словами, если на вход конечного автомата, установленного в начальное состояние z 0 , подавать в некоторой последовательности буквы входного алфавита x (0), x (1), x (2), …, т.е. входное слово, то на выходе автомата будут последовательно появляться буквы выходного алфавита y (0), y (1), y (2), …, образуя выходное слово.

Таким образом, работа конечного автомата происходит по следующей схеме: в каждом t -м такте на вход автомата, находящегося в состоянии z (t ), подается некоторый сигнал x (t ), на который он реагирует переходом (t +1)-го такта в новое состояние z (t +1) и выдачей некоторого выходного сигнала. Сказанное выше можно описать следующими уравнениями: для F -автомата первого рода, называемого также автоматом Мили ,

z (t +1) = j[z (t ), x (t )], t = 0, 1, 2, …; (2.15)

y (t ) = y[z (t ), x (t )], t = 0, 1, 2, …; (2.16)

для F -автомата второго рода

z (t +1) = j[z (t ), x (t )], t = 0, 1, 2, …; (2.17)

y (t ) = y[z (t ), x (t – 1)], t = 1, 2, 3,…. (2.18)

Автомат второго рода, для которого

y (t ) = y[z (t )], t = 0, 1, 2, …, (2.19)

т.е. функция выхода не зависит от входной переменной x (t ), называется автоматом Мура .

Таким образом, уравнения (2.15)-(2.19), полностью задающие
F -автомат, являются частным случаем уравнений (2.3) и (2.4), когда
система S – детерминированная и на её единственный вход поступает дискретный сигнал X .

По числу состояний различают конечные автоматы с памятью и без памяти. Автоматы с памятью имеют более одного состояния, а автоматы без памяти (комбинационные или логические схемы) обладают лишь одним состоянием. При этом, согласно (2.16), работа комбинационной схемы заключается в том, что она ставит в соответствие каждому входному сигналу x (t ) определенный выходной сигнал y (t ), т.е. реализует логическую функцию вида

y (t ) = y[ x (t )], t = 0, 1, 2, … .

Эта функция называется булевой, если алфавит X и Y , которым принадлежат значения сигналов x и y , состоят из двух букв.

По характеру отсчета дискретного времени конечные автоматы делятся на синхронные и асинхронные. В синхронных F -автоматах моменты времени, в которые автомат «считывает» входные сигналы, определяются принудительно синхронизирующими сигналами. После очередного синхронизирующего сигнала с учетом «считанного» и в соответствии с уравнениями (2.15)-(2.19) происходит переход в новое состояние и выдача сигнала на выходе, после чего автомат может воспринимать следующее значение входного сигнала. Таким образом, реакция автомата на каждое значение входного сигнала заканчивается за один такт, длительность которого определяется интервалом между соседними синхронизирующими сигналами. Асинхронный F -автомат считывает входной сигнал непрерывно и поэтому, реагируя на достаточно длинный входной сигнал постоянной величины x , он может, как следует из (2.15)-(2.19), несколько раз изменять состояние, выдавая соответствующее число выходных сигналов, пока не перейдет в устойчивое, которое уже не может быть изменено данным входным сигналом.

Возможные приложения F -схемы. Чтобы задать конечный F -автомат, необходимо описать все элементы множества F = <Z , X , Y , y, j, z 0 >, т.е. входной, внутренний и выходной алфавиты, а также функции переходов и выходов, причем среди множества состояний необходимо выделить состояние z 0 , в котором автомат находится в состоянии t = 0. Существуют несколько способов задания работы F -автоматов, но наиболее часто используются табличный, графический и матричный.

В табличном способе задаются таблицы переходов и выходов, строки которых соответствуют входным сигналам автомата, а столбцы – его состояниям. Первый слева столбец соответствует начальному состоянию z 0 . На пересечении i -й строки и k -го столбца таблицы переходов помещается соответствующее значение j(z k , x i ) функции переходов, а в таблице выходов – соответствующее значение y(z k , x i ) функции выходов. Для F -автомата Мура обе таблицы можно совместить.

Описание работы F -автомата Мили таблицами переходов j и выходов y иллюстрируется табл. 2.1, а описание F -автомата Мура – таблицей переходов (табл. 2.2).

Таблица 2.1

X i z k
z 0 z 1 z k
Переходы
x 1 j(z 0 , x 1) j(z 1 , x 1) j(z k , x 1)
x 2 j(z 0 , x 2) j(z 1 , x 2) j(z k , x 2)
x i j(z 0 , x i ) j(z 1 , x i ) j(z k , x i )
Выходы
x 1 y(z 0 , x 1) y(z 1 , x 1) y(z k , x 1)
x 2 y(z 0 , x 2) y(z 1 , x 2) y(z k , x 2)
x i y(z 0 , x i ) y(z 1 , x i ) y(z k , x i )

Таблица 2.2

x i y(z k )
y(z 0) y(z 1) y(z k )
z 0 z 1 z k
x 1 j(z 0 , x 1) j(z 1 , x 1) j(z k , x 1)
x 2 j(z 0 , x 2) j(z 1 , x 2) j(z k , x 2)
x i j(z 0 , x i ) j(z 1 , x i ) j(z k , x i )

Примеры табличного способа задания F -автомата Мили F 1 приведены в табл. 2.3, а для F -автомата Мура F 2 – в табл. 2.4.

Таблица 2.3

x i z k
z 0 z 1 z 2
Переходы
x 1 z 2 z 0 z 0
x 2 z 0 z 2 z 1
Выходы
x 1 y 1 y 1 y 2
x 2 y 1 y 2 y 1

Таблица 2.4

Y
x i y 1 y 1 y 3 y 2 y 3
z 0 z 1 z 2 z 3 z 4
x 1 z 1 z 4 z 4 z 2 z 2
x 2 z 3 z 1 z 1 z 0 z 0

При графическом способе задания конечного автомата используется понятие направленного графа. Граф автомата представляет собой набор вершин, соответствующих различным состояниям автомата и соединяющих вершины дуг графа, соответствующих тем или иным переходам автомата. Если входной сигнал x k вызывает переход из состояния z i в состояние z j , то на графе автомата дуга, соединяющая вершину z i c вершиной z j , обозначается x k . Для того чтобы задать функцию выходов, дуги графа необходимо отметить соответствующими выходными сигналами. Для автоматов Мили эта разметка производится так: если входной сигнал x k действует на состояние z i , то получается дуга, исходящая из z i и помеченная x k ; эту дугу дополнительно отмечают выходным сигналом y = y(z i , x k ). Для автомата Мура аналогичная разметка графа такова: если входной сигнал x k , действуя на некоторое состояние автомата, вызывает переход в состояние z j , то дугу, направленную в z i и помеченную x k , дополнительно отмечают выходным
сигналом y = y(z j , x k ).

На рис. 2.4. а , б приведены заданные ранее таблицами F -автоматы Мили F 1 и Мура F 2 соответственно.


Рис. 2.4. Графы автоматов а – Мили и б – Мура

При матричном задании конечного автомата матрица соединений автомата квадратная С =||с ij ||, строки соответствуют исходным состояниям, а столбцы – состояния перехода. Элемент с ij = x k /y s , стоящий на пересечении
i -й строки и j -го столбца, в случае автомата Мили соответствует входному сигналу x k , вызывающему переход из состояния z i в состояние z j , и выходному сигналу y s , выдаваемому при этом переходе. Для автомата Мили F 1, рассмотренного выше, матрица соединений имеет вид:

x 2 / y 1 – x 1 / y 1

C 1 = x 1 / y 1 – x 2 / y 2 .

x 1 / y 2 x 2 /y 1

Если переход из состояния z i в состояние z j происходит под действием нескольких сигналов, элемент матрицы c ij представляет собой множество пар «вход-выход» для этого перехода, соединенных знаком дизъюнкции.

Для F -автомата Мура элемент с ij равен множеству входных сигналов на переходе (z i ,z j ), а выход описывается вектором выходов

= y(z k ) ,

i -я компонента которого – выходной сигнал, отмечающий состояние z i .

Для рассмотренного выше F -автомата Мура F2 матрицы соединений и вектор выходов имеют вид:

x 1 x 2 у 1

x 2 x 1 у 1

C 2 = x 2 x 1 ; = у 3

x 2 x 1 у 2

x 2 x 1 у 3

Для детерминированных автоматов выполняется условие однозначности переходов: автомат, находящийся в некотором состоянии, под действием любого входного сигнала не может перейти более чем в одно состояние. Применительно к графическому способу задания F -автомата это означает, что в графе автомата из любой вершины не могут выходить два и более ребра, отмеченные одним и тем же входным сигналом. А в матрице соединений автомата С в каждой строке любой входной сигнал не должен встречаться более одного раза.

Для F -автомата состояние z k называется устойчивым, если для любого входа x i ÎX , для которого j(z k , x i ) = z k , имеет место j(z k ,x i ) = у k . F -автомат называется асинхронным, если каждое его состояние z k ÎZ устойчиво.

Таким образом, понятие в дискретно-детерминированном подходе к исследованию на моделях свойств объектов является математической абстракцией, удобной для описания широкого класса процессов функционирования реальных объектов в автоматизированных системах управления. С помощью F- автомата можно описать объекты, для которых характерно наличие дискретных состояний, и дискретный характер работы во времени – это элементы и узлы ЭВМ, устройства контроля, регулирования и управления, системы временной и пространственной коммутации в технике обмена информацией и т.д.

2.4. Дискретно-стохастические модели (Р -схемы)

Основные соотношения . Рассмотрим особенности построения математических схем при дискретно-стохастическом подходе на вероятностных (стохастических) автоматах. В общем виде вероятностный автомат
Р-схемы (англ. probabijistic automat) можно определить как дискретный потактный преобразователь информации с памятью, функционирование которого в каждом такте зависит только от состояния памяти в нем, и может быть описано статистически.

Введем математическое понятие Р -автомата, используя понятия, введенные для F -автомата. Рассмотрим множество G , элементами которого являются всевозможные пары (x i , z s ), где x i и z s – элементы входного подмножества Х и подмножества состояний Z соответственно. Если существуют две такие функции j и y, что с их помощью осуществляются отображения G ®Z и G®Y, то говорят, что F = X, Y, j, y> определяет автомат детерминированного типа.

Рассмотрим более общую математическую схему. Пусть
Ф – множество всевозможных пар вида (z k , y i ), где у i – элемент выходного подмножества Y . Потребуем, чтобы любой элемент множества G индуцировал на множестве Ф некоторый закон распределения следующего вида:

При этом b kj = 1, где b kj – вероятности перехода автомата в состояние z k и появления на выходе сигнала y j , если он был в состоянии z s и на его вход в этот момент времени поступил сигнал x i . Число таких распределений, представленных в виде таблиц, равно числу элементов множества G . Обозначим множество этих таблиц через В. Тогда четверка элементов P = называется вероятностным автоматом
(Р -автоматом).

Возможные приложения P -схемы. Пусть элементы множества G индуцируют некоторые законы распределения на подмножествах Y и Z , что можно представить соответственно в виде:

При этом z k = 1 и q j = 1, где z k и q j - вероятности перехода
Р -автомата в состояние z k и появления выходного сигнала y k при условии, что
Р z s и на его вход поступил входной сигнал x i .

Если для всех k и j имеет место соотношение q j z k = b kj , то такой
Р -автомат называется вероятностным автоматом Мили . Это требование означает выполнение условия независимости распределений для нового состояния Р -автомата и его выходного сигнала.

Пусть теперь определение выходного сигнала Р- автомата зависит лишь от того состояния, в котором находится автомат в данном такте работы. Другими словами, пусть каждый элемент выходного подмножества Y индуцирует распределение вероятностей выходов, имеющих следующий вид:

Здесь s i = 1, где s i – вероятность появления выходногосигнала y i при у словии, что Р -автомат находился в состоянии z k .

Если для всех k и i имеет место соотношение z k s i = b ki ,то такой
Р -автомат называется вероятностным автоматом Мура. Понятие
Р -автоматов Мили и Мура введено по аналогии с детерминированным
F -автоматом. Частным случаем Р- автомата, задаваемого как P =X, Y , B >, являются автоматы, у которых либо переход в новое состояние, либо выходной сигнал определяются детерминированно. Если выходной сигнал
Р -автомата определяется детерминированно, то такой автомат называется
Y -. Аналогично,
Z -детерминированным вероятностным автоматом называется Р -автомат, у которого выбор нового состояния является детерминированным.

Пример 2.1. Пусть задан Y -детерминированный P -автомат

На рис. 2.5 показан ориентированный граф переходов этого автомата. Вершины графа сопоставляются состояниям автомата, а дуги – возможными переходами из одного состояния в другое. Дуги имеют веса, соответствующие вероятностям перехода p ij , а около вершин графа пишутся значения выходных сигналов, индуцируемых этими состояниями. Требуется оценить суммарные финальные вероятности пребывания этого P -автомата в состояниях z 2 и z 3 .

Рис. 2.5. Граф вероятностного автомата

При использовании аналитического подхода можно записать известные соотношения из теории марковских цепей и получить систему уравнений для определения финальных вероятностей. При этом начальное состояние z 0 можно не учитывать, так как начальное распределение не оказывает влияние на значения финальных вероятностей. Тогда имеем

где с k – финальная вероятность пребывания Р -автомата в состоянии z k .

Получаем систему уравнений

Добавим к этим уравнениям условие нормировки с 1 + с 2 + с 3 + с 4 = 1. Тогда, решая систему уравнений, получим с 1 = 5/23, с 2 = 8/23, с 3 = 5/23,
с 4 = 5/23. Таким образом, с 2 + с 3 = 13/23 = 0,5652. Другими словами, при бесконечной работе заданного в этом примере Y -детерминированного
Р -автомата на его выходе формируется двоичная последовательность с вероятностью появления единицы, равной 0,5652.

Подобные Р -автоматы могут использоваться как генераторы марковских последовательностей, которые необходимы при построении и реализации процессов функционирования систем S или воздействий внешней среды Е.

2.5. Непрерывно-стохастические модели (Q -схемы)

Основные соотношения . Особенности непрерывно-стохастического подхода рассмотрим на примере типовых математических Q- схем – систем массового обслуживания (англ. queueing system).

В качестве процесса обслуживания могут быть представлены различные по своей физической природе процессы функционирования экономических, производственных, технических и других систем, например: потоки поставок продукции некоторому предприятию, потоки деталей и комплектующих изделий на сборочном конвейере цеха, заявки на обработку информации ЭВМ от удаленных терминалов и т.д. При этом характерным для работы таких объектов является случайное появление заявок (требований) на обслуживание и завершение обслуживания в случайные моменты времени, т.е. стохастический характер процесса их функционирования.

Потоком событий называется последовательность событий, происходящих одно за другим в какие-то случайные моменты времени. Различают потоки однородных и неоднородных событий. Поток событий называется однородным, если он характеризуется только моментами поступления этих событий (вызывающими моментами) и задается последовательностью {t n } = {0 £ t 1 £ t 2 ... £ t n £ }, где t n – момент наступления п- го события – неотрицательное вещественное число. Однородный поток событий также может быть задан в виде последовательности промежутков времени между п- м и (n – 1)-м событиями {t n }, которая однозначно связана с последовательностью вызывающих моментов {t n }, где t n = t n t n -1 , п ³ 1, t 0 = 0, т.е. t 1 = t 1 . Потоком неоднородных событий называется последовательность {t n , f n }, где t n – вызывающие моменты; f n – набор признаков события. Например, применительно к процессу обслуживания для неоднородного потока заявок может быть задана принадлежность к тому или иному источнику заявок, наличие приоритета, возможность обслуживания тем или иным типом канала.

В любом элементарном акте обслуживания можно выделить две основные составляющие: ожидание обслуживания заявкой и собственно обслуживание заявки. Это можно изобразить в виде некоторого i -го прибора обслуживания П i (рис. 2.6), состоящего из накопителя заявок H i , в котором может одновременно находиться j i = заявок, где L i H емкость
i -гo накопителя, и канала обслуживания заявок (или просто канала) K i . На каждый элемент прибора обслуживания П i поступают потоки событий: в накопитель H i поток заявок w i , на канал K i - поток обслуживаний и i .


Рис. 2.6. Прибор обслуживания заявок

Заявки, обслуженные каналом K i , и заявки, покинувшие прибор П i по различным причинам необслуженными (например, из-за переполнения накопителя H i ), образуют выходной поток y i Î Y, т.е. интервалы времени между моментами выхода заявок образуют подмножество выходных переменных.

Обычно, поток заявок w i ÎW, т.е. интервалы времени между моментами появления заявок на входе K i , образует подмножество неуправляемых переменных, а поток обслуживания u i ÎU, т.е. интервалы времени между началом и окончанием обслуживания заявки, образует подмножество управляемых переменных.

Процесс функционирования прибора обслуживания П i можно представить как процесс изменения состояний его элементоввовремени z i (t ). Переход в новое состояние для П i означает изменение количества заявок, которые в нем находятся (в канале K i и в накопителе H i ). Таким образом, вектор состояний для П i имеет вид: , где z i H – состояние накопителя H i (z i H = 0 – накопитель пуст, z i H = 1 – в накопителе имеется одна заявка, ..., z i H = L i H накопитель полностью заполнен); L i H – емкость накопителя Н i , измеряемая числом заявок, которые в нем могут поместиться; z i k – состояние канала K i (z i k = 0канал свободен, z i k = 1 – канал занят).

Возможные приложения Q- схем. В практике моделирования систем, имеющих более сложные структурные связи и алгоритмы поведения, для формализации используются не отдельные приборы обслуживания, а
Q- схемы, образуемые композицией многих элементарных приборов обслуживания П i . Если каналы К i различных приборов обслуживания соединены параллельно, то имеет место многоканальное обслуживание (многоканальная Q- схема), а если приборы П i и их параллельные композиции соединены последовательно, то имеет место многофазное обслуживание (многофазная Q- схема). Таким образом, для задания Q- схемы необходимо использовать оператор сопряжения R , отражающий взаимосвязь элементов структуры (каналов и накопителей) между собой.