Динамический диапазон и качество сканирования. Какое оптическое разрешение нужно для Вашей работы

На первый взгляд, идея создания планшетного сканера с оптическим разрешением более 600 ppi, не предназначенного для работы с прозрачными оригиналами, кажется довольно сомнительной - ведь для подавляющего большинства оригиналов, сканируемых в отраженном свете, более чем достаточно 300-400 ppi. Однако не стоит забывать, что солидную долю сканируемых как в домашних, так и офисных условиях оригиналов составляют изображения, отпечатанные типографским способом. Из-за интерференционных явлений, возникающих при оцифровке растрированных изображений, на полученном изображении появляется заметный муар, бороться с которым без ущерба для качества или размера изображения довольно сложно. Для борьбы с подобными явлениями используются специальные алгоритмы, заложенные в программы управления сканированием. Как правило, работа функции подавления муара основана на сканировании оригинала с избыточным (то есть большим, чем задано пользователем) разрешением и дальнейшей программной обработкой полученного изображения. Вот тут-то преимущество сканеров с большим разрешением будет очевидно в прямом смысле этого слова.

Основные технические параметры сканеров

Разрешающая способность

Разрешающая способность, или разрешение, - один из наиболее важных параметров, характеризующих возможности сканера. Самая распространенная единица измерения разрешающей способности сканеров - количество пикселов на один дюйм (pixels per inch , ppi ). Не следует отождествлять ppi c более известной единицей dpi (dots per inch - количество точек на дюйм), которая используется для измерения разрешающей способности растровых печатающих устройств и имеет несколько иной смысл.

Различают оптическое и интерполированное разрешение. Величину оптического разрешения можно вычислить, разделив количество светочувствительных элементов в сканирующей линейке на ширину планшета. Несложно сосчитать, что количество светочувствительных элементов у рассматриваемых нами сканеров, имеющих оптическое разрешение 1200 ppi и формат планшета Legal (то есть ширину 8,5 дюйма, или 216 мм), должно составлять не менее 11 тыс.

Говоря о сканере как об абстрактном цифровом устройстве, нужно понимать, что оптическое разрешение - это частота дискретизации, только в данном случае отсчет идет не по времени, а по расстоянию.

В табл. 1 приведены требуемые значения разрешающей способности для решения наиболее распространенных задач. Как можно заметить, при сканировании в отраженном свете в большинстве случаев вполне достаточно разрешения в 300 ppi, а более высокие значения требуются либо для масштабирования оригинала на больший размер, либо для работы с прозрачными оригиналами, в частности с 35-миллиметровыми диапозитивами и негативами.

Таблица 1. Величины разрешающей способности для решения наиболее распространенных задач

Применение

Требуемое разрешение, ppi

Сканирование в отраженном свете

Иллюстрации для Web-страниц

Распознавание текста

Штриховая графика для печати на монохромном принтере

Черно-белое фото для печати на монохромном принтере

Цветное фото для печати на струйном принтере

Текст и графика для передачи по факсу

Цветное фото для офсетной печати

Сканирование в проходящем свете

35-миллиметровая пленка, фото для Web-страниц

35-миллиметровая пленка, фото для распечатки на струйном принтере

60-миллиметровая пленка, фото для Web-страниц

60-миллиметровая пленка, фото для распечатки на струйном принтере

Многие производители, стремясь привлечь покупателей, указывают в документации и на коробках своих изделий значение оптического разрешения 1200*2400 ppi. Однако вдвое большая цифра для вертикальной оси означает не что иное, как сканирование с половинным вертикальным шагом и дальнейшей программной интерполяцией, так что в данном случае оптическое разрешение этих моделей фактически остается равным первой цифре.

Интерполированное разрешение - это повышение количества пикселов в отсканированном изображении за счет программной обработки. Величина интерполированного разрешения может во много раз превышать величину оптического разрешения, однако следует помнить, что количество информации, полученной с оригинала, будет таким же, как и при сканировании с оптическим разрешением. Другими словами, повысить детальность изображения при сканировании с разрешением, превышающим оптическое, не удастся.

Разрядность

Разрядность, или глубина цвета, определяет максимальное число значений, которые может принимать цвет пиксела. Иначе говоря, чем выше разрядность при сканировании, тем большее количество оттенков может содержать полученное изображение. Например, при сканировании черно-белого изображения с разрядностью 8 бит мы можем получить 256 градаций серого (2 8 = 256), а используя 10 бит - уже 1024 градации (2 10 = 1024). Для цветных изображений возможны два варианта указываемой разрядности - количество бит на каждый из базовых цветов либо общее количество бит. В настоящее время стандартом для хранения и передачи полноцветных изображений (например, фотографий) является 24-битный цвет. Поскольку при сканировании цветных оригиналов изображение формируется по аддитивному принципу из трех базовых цветов, то на каждый из них приходится по 8 бит, а количество возможных оттенков составляет немногим более16,7 млн. (2 24 = 16 777 216). Многие сканеры используют большую разрядность - 12, 14 или 16 бит на цвет (полная разрядность составляет соответственно 36, 42 или 48 бит), однако для записи и дальнейшей обработки изображений эта функция должна поддерживаться применяемым программным обеспечением; в противном случае полученное изображение будет записано в файл с 24-битной разрядностью.

Следует отметить, что более высокая разрядность далеко не всегда означает более высокое качество изображения. Указывая 36- или 48-битную глубину цвета в документации или рекламных материалах, производители зачастую умалчивают о том, что часть битов используется для хранения служебной информации.

Динамический диапазон (максимальная оптическая плотность)

Как известно, более темные участки изображения поглощают большее количество падающего на них света, чем светлые. Величина оптической плотности показывает, насколько темным является данный участок изображения и, следовательно, какое количество света поглощается, а какое отражается (или проходит насквозь в случае прозрачного оригинала). Обычно плотность измеряется для некоего стандартного источника света, имеющего заранее определенный спектр. Значение плотности вычисляется по формуле:

где D - величина плотности, R - коэффициент отражения (то есть доля отражаемого или проходящего света).

Например, для участка оригинала, отражающего (пропускающего) 15% падающего на него света, величина плотности составит log(1/0,15) = 0,8239.

Чем выше максимальная воспринимаемая плотность, тем больше динамический диапазон данного устройства. Теоретически динамический диапазон ограничен используемой разрядностью. Так, восьмибитное монохромное изображение может иметь до 256 градаций, то есть минимальный воспроизводимый оттенок составит 1/256 (0,39%), следовательно динамический диапазон будет равен log(256) = 2,4. Для 10-битного изображения он будет уже немного больше 3, а для 12-битного - 3,61.

Фактически это означает, что сканер с большим динамическим диапазоном позволяет лучше воспроизводить темные участки изображений или просто темные изображения (например, передержанные фотоснимки). Следует оговориться, что в реальных условиях динамический диапазон оказывается меньше вышеуказанных значений из-за влияния шумов и перекрестных помех.

В большинстве случаев плотность непрозрачных оригиналов, сканируемых на отражение, не превышает значения 2,0 (что соответствует участку с однопроцентным отражением), а типичное значение для высококачественных печатных оригиналов составляет 1,6. Слайды и негативы могут иметь участки с плотностью выше 2,0.

Источник света

Источник света, используемый в конструкции того или иного сканера, в немалой степени влияет на качество получаемого изображения. В настоящее время используются четыре типа источников света:

  1. Ксеноновые газоразрядные лампы . Их отличают чрезвычайно малое время включения, высокая стабильность излучения, небольшие размеры и долгий срок службы. Но они не очень эффективны с точки зрения соотношения количества потребляемой энергии и интенсивности светового потока, имеют неидеальный спектр (что может вызвать нарушение точности цветопередачи) и требуют высокого напряжения (порядка 2 кВ).
  2. Люминесцентные лампы с горячим катодом . Эти лампы обладают наибольшей эффективностью, очень ровным спектром (которым к тому же можно управлять в определенных пределах) и малым временем разогрева (порядка 3-5 с). К отрицательным сторонам можно отнести не очень стабильные характеристики, довольно значительные габариты, относительно небольшой срок службы (порядка 1000 часов) и необходимость держать лампу постоянно включенной в процессе работы сканера.
  3. Люминесцентные лампы с холодным катодом . Такие лампы имеют очень большой срок службы (от 5 до 10 тыс. часов), низкую рабочую температуру, ровный спектр (следует отметить, что конструкция некоторых моделей этих ламп оптимизирована для повышения интенсивности светового потока, что негативно отражается на спектральных характеристиках). За перечисленные достоинства приходится расплачиваться довольно большим временем прогрева (от 30 с до нескольких минут) и более высоким, чем у ламп с горячим катодом, энергопотреблением.
  4. Светодиоды (LED). Они применяются, как правило, в CIS-сканерах. Цветодиоды обладают очень малыми габаритами, небольшим энергопотреблением и не требуют времени для прогрева. Во многих случаях используются трехцветные светодиоды, с большой частотой меняющие цвет излучаемого света. Однако светодиоды имеют довольно низкую (по сравнению с лампами) интенсивность светового потока, что снижает скорость сканирования и увеличивает уровень шума на изображении. Весьма неравномерный и ограниченный спектр излучения неизбежно влечет за собой ухудшение цветопередачи.

Скорость сканирования и время прогрева

В процессе тестирования было измерено время, необходимое для «холодного» старта и восстановления из режима энергосбережения.

Для оценки производительности тестируемых сканеров были проведены замеры времени, требующегося для выполнения нескольких наиболее типичных задач. Отсчет времени начинался с момента нажатия кнопки Scan (или аналогичной) в приложении, из которого производилось сканирование, и заканчивался после того, как данное приложение вновь было готово к работе (то есть можно было производить какие-либо действия, например изменение настроек или области сканирования).

Оптическое разрешение - измеряется в точках на дюйм (dots per inch, dpi). Характеристика, показывающая, чем больше разрешение, тем больше информации об оригинале может быть введено в компьютер и подвергнуто дальнейшей обработке. Часто приводится такая характеристика, как “интерполированное разрешение”(интерполяционное разрешение). Ценность этого показателя сомнительна - это условное разрешение, до которого программа сканера “берется досчитать” недостающие точки. Этот параметр не имеет никакого отношения к механизму сканера и, если интерполяция все же нужна, то делать это лучше после сканирования с помощью хорошего графического пакета.

Глубина цвета

Глубина цвета – это характеристика, обозначающая количество цветов, которое способен распознать сканер. Большинство компьютерных приложений, исключая профессиональные графические пакеты, такие как Photoshop, работают с 24 битным представлением цвета (полное количество цветов -16.77 млн. на точку). У сканеров эта характеристика, как правило, выше - 30 бит, и, у наиболее качественных из планшетных сканеров, - 36 бит и более. Конечно, может возникнуть вопрос - зачем сканеру распознать больше бит, чем он может передать в компьютер. Однако, не все полученные биты равноценны. В сканерах с ПЗС датчиками два верхних бита теоретической глубины цвета обычно являются “шумовыми” и не несут точной информации о цвете. Наиболее очевидное следствие “шумовых” битов недостаточно непрерывные, гладкие переходы между смежными градациями яркости в оцифрованных изображениях. Соответственно в 36 битном сканере “шумовые” биты можно сдвинуть достаточно далеко, и в конечном оцифрованном изображении останется больше чистых тонов на канал цвета.

Динамический диапазон (диапазон плотности)

Оптическая плотность есть характеристика оригинала, равная десятичному логарифму отношения света падающего на оригинал, к свету отраженному (или прошедшему - для прозрачных оригиналов). Минимально возможное значение 0.0 D - идеально белый (прозрачный) оригинал. Значение 4.0 D – абсолютно черный (непрозрачный) оригинал. Динамический диапазон сканера характеризует какой диапазон оптических плотностей оригинала сканер может распознать, не потеряв оттенки ни в светах, ни в тенях оригинала. Максимальная оптическая плотность у сканера - это оптическая плотность оригинала, которую сканер еще отличает от полной темноты. Все оттенки оригинала темнее этой границы сканер не сможет различить. Данная величина очень хорошо отделяет простые офисные сканеры, которые могут потерять детали, как в темных, так и светлых участках слайда и, тем более, негатива, от более профессиональных моделей. Как правило, для большинства планшетных сканеров данная величина лежит в пределах от 1.7D (офисные модели) до 3.4 D (полупрофессиональные модели). Большинство бумажных оригиналов, будь то фотография или журнальная вырезка, обладают оптической плотностью не более 2.5D. Слайды требуют для качественного сканирования, как правило, динамический диапазон более 2.7 D (Обычно 3.0 – 3.8). И только негативы и рентгеновские снимки обладают более высокими плотностями (3.3D – 4.0D), и покупать сканер с большим динамическим диапазоном имеет смысл, если вы будете работать в основном с ними, иначе вы просто переплатите деньги.

Вид оригинала . Сканирование может осуществляться в проходящем свете (для оригиналов на прозрачной подложке) или отраженном (для оригиналов на непрозрачной подложке). Сканирование негативов отличается особой сложностью, поскольку этот процесс не сводится к простому инвертированию градаций цвета от негатива до позитива. Чтобы точно оцифровать цвет в негативах, сканер должен компенсировать цветную фотографическую вуаль на оригинале. Есть несколько способов решения этой проблемы: аппаратная обработка, программные алгоритмы перехода от негатива к позитиву или справочные таблицы для конкретных типов фотопленки.

Оптическое разрешение. Сканер снимает изображение не целиком, а по строчкам. По вертикали планшетного сканера движется полоска светочувствительных элементов и снимает по точкам изображение строку за строкой. Чем больше светочувствительных элементов у сканера, тем больше точек он может снять с каждой горизонтальной полосы изображения. Это и называется оптическим разрешением. Обычно его считают по количеству точек на дюйм -- dpi (dots per inch). Сегодня считается нормой уровень разрешение не менее 600 dpi.

Скорость работы. В отличие от принтеров, скорость работы сканеров указывают редко, поскольку она зависит от множества факторов. Иногда указывают скорость сканирования одной линии в миллисекундах.

Глубина цвета измеряется количеством оттенков, которые устройство способно распознать. 24 бита соответствует 16 777 216 оттенков. Современные сканеры выпускают с глубиной цвета 24, 30, 36, 48 бит.

Динамический диапазон характеризует какой диапазон оптических плотностей оригинала сканер может распознать, не потеряв оттенки ни в светах, ни в тенях оригинала. Максимальная оптическая плотность у сканера - это оптическая плотность оригинала, которую сканер еще отличает от полной темноты. Все оттенки оригинала темнее этой границы сканер не сможет различить.

Пакетная обработка - это сканирование нескольких оригиналов одновременно, с сохранением каждого изображения в отдельном файле. Программа пакетной обработки позволяет без участия оператора выполнить сканирование определенного числа оригиналов, обеспечивая автоматическое переключение режимов сканирования и сохранение отсканированных файлов.

Диапазон масштабирования - это интервал величин изменения масштаба оригинала, который может быть выполнен во время сканирования. Он связан с разрешающей способностью сканера: чем выше значение максимального оптического разрешения, тем больше коэффициент увеличения исходного изображения без потери качества.

По типу интерфейса сканеры делятся всего на четыре категории:

Сканеры с параллельным или последовательным интерфейсом, подключаемые к LPT- или COM-порту Эти интерфейсы самые медленные. Возможно появление проблем, связанных с конфликтом сканера с LPT-принтером, если таковой имеется.

Сканеры с интерфейсом USB Стоят чуть-чуть дороже, но работают значительно быстрее. Необходим компьютер с USB-портом.

Сканеры со SCSI-интерфейсом, с собственной интерфейсной платой для шины ISA или PCI либо подключаемые к стандартному SCSI-контроллеру. Эти сканеры быстрее и дороже представителей двух предыдущих категорий и относятся к более высокому классу.

Сканеры с современным интерфейсом FireWire(IEEE 1394) специально разработанным для работы с графикой и видео. Такие модели представлены на рынке относительно недавно.

Итоги:

  • Сканер способен нормально, почти без искажений воспринимать плотности прозрачного оригинала до 1.6
  • Сканер, внося искажения и «шумы», но всё же способен воспринимать плотности от 1.6 до 2.35
  • Сканер слеп за плотностью 2.4 , любую плотность выше этого значения он воспринимает как чёрное.

Что делать?

Давайте посмотрим, что нам предлагает производитель сканера. В Xsane (если быть точным, то в backend"е Sane) есть возможность регулировать яркость с помощью «железа». Т.е. сканер как бы повышает яркость лампы, для того чтобы «пробить» D max=2.4 . На самом деле, никакого повышения яркости лампы не происходит, сканер (а точнее его firmware) обрабатывает получаемые значения, в результате мы должны получить более высокое значение максимальной плотности, которое сканер интерпретирует как чёрное. Итак, будем использовать возможности предоставленные производителем. Устанавливаем значение Brightness в Xsane на максимум, который позволяет «железо». В нашем случае это 3 .



Как и в предыдушем тесте, строим график по полученным результатам (дабы не перегружать читателя информацией, я их не привожу).




Для сравнения была оставлена первая характеристическая кривая (test 1 ), новая кривая (Brightness=3 ) обозначена красным цветом цветом (test 2 ). Приступим к сравнительному анализу: сканер как имел ΔD scanner =2.4 так и имеет, на основании чего можно судить о том, что «децибельник» (режим усиления сигнала) включен всегда, и работает на участке D test =1.6 D test =2.4 , так как никаких новых, более высоких значений D max_test сканеру различить не удаётся.

Характерная ломаная линия на участке D test =1.6-2.4 стала плавной, что говорит о том, что firmware сканера, при включении опции повышения яркости, преобразует получаемые от матрицы значения более правильно с точки зрения тонопередачи. Но если судить по изображениям, «шумов» от этого меньше не становится, их становится только больше, так как происходит их усиление, или, возможно, «шум» становится более ровным. Скорее всего, верно последнее.

Теперь взглянём на участок от D test =0.0 до D test =0.5 , кривая на этом участке имеет низкое значение гаммы. То есть света будут переданы мягко, и светлее чем они есть на самом деле

Оценим полученный результат в целом: повышение яркости происходит не за счёт эффективного использования плотностей, а за счёт изменения уровня всех плотностей (обратите внимание, каким тоном передаётся значение «чёрного», если в test1 он находится на значении D scanner =1.4 , то в test2 на значении D scanner =1.2 ). Применять эту опцию не имеет смысла. Никакого полезного увеличения яркости мы не получим. «Серое поле» станет светлее; «белое поле» останется таким же, каким и было; «чёрное поле» тоже станет светлее, но никаких новых деталей там не появится. Сканер как «видел» D scanner =2.4 , так и «видит». Зато повыситься уровень «шумов».

Честно говоря, когда я делал этот тест, то думал, что Epson всё же «сдвинет» кривую вправо, т.е. мы потеряем детали в светах, но получим в тенях, т.е. D scanner не измениться, но будет работать на другом участке D test =(D max -D min ). Возможно, производитель пытался реализовать эту возможность. На это указывает характеристическая кривая в диапазоне D test 0.0-0.5 . Предположу, что сделано это для того, чтобы не терять детали в светах в случае смещения кривой вправо. На практике, уменьшился только средний градиент.

Сканирование чёрно-белых негативов.

Попытаемся доказать на практике полученные результаты. Для «чистоты» эксперимента я буду всё время использовать один единственный чёрно-белый негатив. Замечу, что используемый негатив имеет нормальные плотности, а также проявлен до среднего градиента 0.62 , что де-факто является стандартом. В кинолаборатории он печатается на 11-м свету, что является нормой.

Как мы уже выяснили, одной из проблем сканирования как негативов, так и слайдов является наличее «шумов» в изображении. Это явление особенно заметно при сканировании достаточно плотных (тёмных) оригиналов. Связано это с ограниченностью диапазона оптических плотностей ΔD scannner =D max -D min .

Например: сканер «Nikon Coolscan 4000» способен воспроизвести диапазон оптических плотностей 4.2 (так не хочеться никого огорчать... про Epson 1650, я уже выяснил его ΔD =3.0 :-)). Сканеры попроще имеют более скромные показатели.

Максимальный интервал оптических плотностей ч/б негатива 2.5 , ΔD max слайда = 3.0 , цветного маскированного негатива около 2.5 , но из-за наличия маски этот тип негативов обладает большим D min .

Я убеждён, что ΔD scanner =3.0 вполне достаточно для сканирования чего угодно, кроме, пожалуй, рентгеновских снимков. Проблема состоит в том, на каком участке негатива (слайда) находится этот ΔD scanner =3.0 . Попробую объяснить почему.

Тихон Баранов

Настольные сканеры появились в 80-х годах и сразу стали объектом повышенного внимания, но сложность использования, отсутствие универсального программного обеспечения, а самое главное, высокая цена не позволяли сканерам выйти за пределы специализированного использования.

С тех пор прошло не так много времени, но уже выделилось целое направление настольных сканеров, предназначенных в основном для офисного и домашнего использования. Причем, за последние несколько лет, благодаря невероятному снижению цен популярность сканеров выросла значительным образом. Цена хорошего планшетного сканера сегодня соизмерима с ценой хорошей видеокарты или принтера, поэтому логично продолжить покупку компьютера и принтера приобретением сканера.

Последние два года планшетные сканеры настолько упали в цене, и настолько вырос ассортимент предлагаемых моделей, что выбор этого устройства для конкретных задач стал более чем актуальным.

В предлагаемом материале хочется рассказать о строении планшетного сканера, разобрать особенности процесса сканирования и дать некоторые рекомендации в приобретении планшетного сканера.

Настольный сканер незаменим при работе с компьютером, если у Вас есть потребность делать вставки графических изображений или текстов с бумажных носителей в документы, создаваемые при помощи компьютера. Современные настольные сканеры достаточно просты в использовании, имеют интуитивно-понятный интерфейс, но существует ряд характеристик и особенностей, на которые следует обращать внимание при выборе сканера - оптическая система, программная часть TWAIN-модуль и интерфейс. Разберем все три части по отдельности.

Оптика и механика

Данная часть состоит из сканирующей каретки с источником света, фокусирующего объектива или линзы, прибора с зарядовой связью и аналого-цифрового преобразователя (АЦП).

Собственно весь процесс сканирования с участием всего перечисленного выглядит следующим образом. На прозрачное стекло под крышку сканера кладется изображение (текст, графика, фотография), подлежащее сканированию, "лицом" вниз. Дальше начинает движение каретка, совершающая путь, равный длине стекла. Расположенная на ней лампа с холодным катодом освещает изображение. При помощи фокусирующего объектива световой поток от изображения проецируется на прибор с зарядовой связью, где преобразуется в аналоговую информацию. Последняя в АЦП становится цифровой, т.е. битовой, и тем самым понятной компьютеру. Похожее аналого-цифровое (и наоборот) преобразование проделывает модем, поскольку информация по телефонным линиям передается в аналоговой форме.

Точная цветопередача при сканировании цветных изображений происходит путем разделения сканируемого цвета по трем основным составляющим - цветам: красному, зеленому и синему.

Здесь пару слов хочется сказать про понятие "глубина цвета", поскольку если информация о цвете хранится в битах, то глубина цвета - это определенное число бит. Стандартной ("истинной") можно считать глубину цвета в 24 бита на каждую точку, когда на цвета RGB приходится по 8 бит. Соответственно, при такой разрядности сканер воспринимает 16,77 млн. цветовых оттенков одной точки. Помимо 24-битных сканеров на сегодняшний день широко распространены 30-, 36-, 42- и даже 48-битные сканеры. Но что интересно: человеческий глаз "не рассчитан" на глубину цвета более 24 бит. Увеличение разрядности сканеров вызвано не желанием производителей подзаработать на истерии вокруг технологических гонок, причина в другом: аналого-цифровое преобразование приводит к появлению искажений в младших, наиболее "ранимых", битах, - 30-битные (и выше) системы не пропускают пустую информацию в компьютер, "вытягивая" на выходе глубину цвета до полноценных 24 бит.

Раньше для цветного сканирования приходилось использовать трехпроходную технологию. То есть первый проход с красным фильтром для получения красной составляющей, второй - для зеленой составляющей и третий=- для синей. Такой метод имеет два существенных недостатка: малая скорость работы и проблема объединения трех отдельных сканов в один, с вытекающим отсюда не совмещением цветов.

Решением стало создание True Color CCD, позволяющих воспринимать все три цветовые составляющие цветного изображения за один проход. True Color CCD является стандартом на данный момент и в мире уже никто не выпускает трехпроходные сканеры. Аналогично в свое время прекратили существование черно-белые планшетные сканеры.

Рядовой пользователь может запутаться в разнообразии различных разрешений, которые нам предлагает производитель. Данное понятие можно разделить на две группы:

  1. Оптическое разрешение

    Определяется количеством ячеек в линии матрицы, поделенным на ширину поля сканирования. Обычно разрешение сканера обозначается двумя цифрами: 300х600 ppi, 600х1200 ppi и т.п. Хочется, чтобы читатель обратил внимание, что обозначение ppi (pixels per inch - пикселов на дюйм) более точно по отношению к разрешению сканирования, по отношению к распечатанному на принтере изображению - dpi (dots per inch - точек на дюйм).

  2. Интерполированное разрешение

    Выбирается пользователем и может в несколько раз превышать реальное разрешение сканера. Например, программное разрешение 600 ppi сканера HP ScanJet 5100C можно довести до 1200 ppi. Однако больше - не значит в данном случае лучше. Качественное сканирование получается при разрешении равном оптическому, либо меньшим, но ему кратным. Эту характеристику очень любят производители настольных сканеров, часто включая в название и нанося большими буквами на красочной коробке. Вы можете увидеть 4800, 9600 и т.д.

    При покупке сканера следует понимать, что общий подход в компьютерной технике "чем больше, тем лучше" (память, частота процессора и т.д.) в общем случае не относится к сканерам. То есть, конечно, лучше и конечно дороже, но Вам это может, никогда не пригодится! Разрешение, которое необходимо использовать при сканировании, определяется устройством вывода, которое вы используете.

    При сканировании изображений необходимо отталкиваться от оптического разрешения сканера. Т.е. если для сканера указано разрешение 300х600 ррi, сканируйте в режиме 300х300 ppi или 150х150 ppi. Файлы с интерполированным разрешением (в данном случае это может быть 600, 1200, 2400 и более ppi) не только велики по объему, но и содержат множество нереальных, программно "придуманных" пикселов, что сказывается на качестве получаемой картинки.

    Для вывода на экран один к одному (презентации, Web дизайн) достаточно задать 72 точки на дюйм или 100 точек на дюйм, так как все мониторы выдают либо 72, либо 96 точек на дюйм.

    При использовании струйного принтера при выводе цветных изображений достаточно задать разрешение сканера = разрешению принтера/3, так как производители принтеров указывают максимальное разрешение принтеров, при печати в цвете струйные принтеры используют три точки для создания одной точки, получаемой со сканера. То есть и здесь Вам хватит 200 - 250 точек на дюйм.

    Тогда в каких случаях нужно большое разрешение? Ответ прост: если требуется увеличивать или растягивать изображение, снятое с оригинала. Подумайте: может быть у Вас никогда и не возникнет такой потребности, а переплачивать придется достаточно много.

    Одной из основных характеристик сканера является динамический диапазон. Немножко поясним эту характеристику. Любое изображение имеет оптическую плотность: от 0.0 D (абсолютно белое, прозрачное) до 4,0 (абсолютно черное, непрозрачное). Динамиче-ский диапазон сканера определяется его способностью воспринимать оптическую плотность сканируемого изображения. Если сканер имеет динамический диапазон равный 2,5 D, то он сможет справиться с фотографиями, но будет "пас" при работе с негативами, имеющими оптическую плотность более 3,0 D. Это значит, что сканер не воспримет наиболее темные участки изображения и произведет неполноценное сканирование. Чтобы было понятно, приведу, как пример, советскую цветную фотопленку. Кто имел с ней дело, сравнение поймет отлично. Советская фотопленка выпускалась с низкой глубиной цвета и потому имела большие проблемы с отображением светлых и темных тонов.

    Дешевые планшетные сканеры имеют динамический диапазон 2.0 - 2.7D, хорошие 3.0=- 3.3D, новейшие модели 3.6D.

    Один из важнейших параметров матрицы - уровень производимого ею шума. Высокий уровень "шумности" крайне отрицательно влияет на качество сканирования, сокращая динамический диапазон и число разрядов с действительно полезными данными. Допускаемый уровень шума CCD-матриц сканеров SOHO-сектора - 3-4mV.

    В данной статье автор пытается дать некоторый обзор сканеров с традиционной CCD - технологией. Справедливости ради надо сказать, что на рынке присутствует альтернатива - CIS-технология. Последняя известна достаточно давно, но сканеры с использованием этой технологии появились относительно недавно. В таких сканерах полностью отсутствуют оптика и зеркала, приемный элемент равен по ширине рабочему полю сканирования и представляет собой линейку из нескольких одинаковых матриц. Помимо иных относительно незначительных недостатков этому варианту присущи два принципиальных: слабая фокусировка (оптики-то нет-) и небольшие зазоры между соседними матрицами. Сканированию текста это не мешает, но для работы с полноцветной графикой лучше выбрать сканер, построенный на основе традиционной CCD-технологии.

TWAIN-модуль

Парадоксально, но факт: сканер не является стандартным устройством для Windows. (Можно было бы оспорить данное утверждение, ведь в Windows`98 драйверы для сканеров установлены. Однако мне еще не попадался такой сканер, который бы работал с драйверами "девяностовосьмерки". Может быть, потому, что драйверы написаны для USB, а сканеров с таким интерфейсом на рынке еще мало.) Для взаимодействия графических приложений компьютера и оптико-электронной системы сканера необходима специальная программа, в роли которой выступает TWAIN-модуль. Ничего особо сложного он не представляет, но надо принять во внимание то обстоятельство, что разные версии TWAIN-модуля одного производителя могут вести себя неадекватно по отношению к разным версиям Windows, вплоть до полной их несовместимости. Это легко можно понять, если учесть сходность TWAIN-модуля с обыкновенным драйвером, подлежащим обновлению, например с выходом нового "детища" Билла Гейтса. Собственно, благодаря TWAIN-модулю пользователь способен управлять на экране монитора процессом сканирования. Модули эти как "произведения искусства" конкретных производителей сканеров отличаются различным набором своих функциональных возможностей. В модулях недорогих цветных планшетников, скорее всего, пользователь найдет такие функции, как: окно предварительного просмотра, автоматическое определение области сканирования, возможность выбора разрешения и режима сканирования, регулирование контрастности, яркости и гаммы, фильтр подавления печатного растра и др. Помимо названных, существует масса других, более специфических, функций - их можно встретить в модулях профессиональных сканеров, называть их здесь мы не будем.

Аппаратный интерфейс

Интерфейс влияет на скорость процесса сканирования будучи ответственным за быстроту обмена данными между компьютером и сканером. Сейчас к LPT- и SCSI-сканерам прибавились модели, оснащенные перспективным и шустрым интерфейсом USB. К примеру, существуют три разновидности модели Astra 1220 (производства UMAX): Astra 1220P, подключаемая к порту принтера, Astra 1220U, использующая интерфейс USB, и Astra 1220S=- SCSI-устройство. Наиболее скоростной из них является модель с интерфейсом SCSI, с USB - помедленнее, а с LPT - самая "тихоходная". Вообще соотношение SCSI/USB/LPT считается равным 3/2/1. В то же время следует заметить, что в отдельных случаях скоростные показатели сканеров с тем или иным интерфейсом могут значительно отличаться от ожидаемых. Однако такие моменты лишь подтверждают правило, поэтому разница в цене, существующая между LPT-, USB- и SCSI-сканерами, вполне оправдана.

Тем не менее существует ряд условий, выполнение которых может несколько ускорить работу интерфейсных устройств Вашего сканера.

  • Если Ваш аппарат подключается к параллельному порту компьютера, стоит обратить внимание на режим, в котором работает контроллер порта. Традиционно рекомендуется устанавливать ЕРР\ЕСР, однако большинство современных BIOS поддерживает различные варианты этого режима: EPP v.1.7, EРP\EСP v.1.9, и так далее. В общем случае определить оптимальный вариант можно только экспериментально.
  • Большинство SCSI-сканеров класса SOHO комплектуется сейчас контроллерами типа DTC3181 либо аналогичными. Эти контроллеры не имеют собственного BIOS, единственный доступный пользователям элемент управления - перемычки (jumpers) J1, J2, задающие поддержку Plug"n"Play и величину wait state (WS) соответственно; второй параметр по умолчанию имеет значение "1". Распространено заблуждение, согласно которому установка WS=0 приводит к "ускорению" сканирования. К сожалению, это не так: в лучшем случае скорость сканирования не изменится, в худшем - Вы получите сообщение типа "Scanner not ready"...

    Известны случаи, когда к существенному замедлению работы сканера приводил конфликт двух SCSI-контроллеров. Если такую проблему не удается решить переназначением ресурсов конфликтующим устройствам, рассмотрите вариант установки сканера в составе SCSI-цепочки на более мощный контроллер. При этом сканер должен быть последним устройством цепочки, его следует терминировать, а SCSI ID выставить в положение, соответствующее требованиям используемого контроллера (допустимые положения: 1...6). Имеющийся опыт использования сканеров Mustek с быстродействующими контроллерами Adaptec 2940 AU и Asus SC-200 PCI показывает, что подключенный таким образом сканер работает быстрее, чем с "родной" SCSI-II картой DTC3181.

    Выбор сканера

    Перво-наперво хочется, чтобы покупатель имел в виду, что сканер всегда покупается для конкретных работ, и не пытайтесь здесь крутить пальцами перед своими друзьями, показывая им модель, которую вы приобрели, ну с очень крутыми характеристиками - опытный, знающий пользователь может над вами посмеяться. Если вы не представляете, какие работы будете выполнять, то вам, скорее всего, необходим сканер для дома, и ниже мы подберем сканер и для вас.

    Работы по сканированию текста

    Для этих работ подойдут любые сканеры, так как черно-белый текст способны хорошо отсканировать практически любые из представленных на рынке сканеров - смело выбирайте самый дешевый вариант одного из известных производителей.

    Домашние работы

    Если вы не ставите перед собой глобальных, крупномасштабных задач и у вас рядом не стоит какой-нибудь "супер-пупер-лазерный цветной" принтер, с "офигительными" характеристиками, с помощью которого вы тихой сапой намереваетесь заняться тем, чем у нас занимается фабрика "Гознак", то вам подойдет серия Scan Express фирмы Mustek, при минимальной цене она даст вам вполне приемлемое качество. Для просмотра изображений на мониторе вам достаточно разрешения сканера 100 точек на дюйм, для распечатывания на принтере с небольшим увеличением, хватит 600 точек на дюйм. Если же вы собираетесь создать огромный домашний фотоархив, то вам стоит обратить внимание на более мощные модели - серия Mustek Paragon, рассчитанная на большие объемы работ, и сканеры Umax Astra с улучшенной цветопередачей, для тех, кто не понаслышке знаком с PhotoShop и может на простом уровне откалибровать свой монитор.

    Если вы не знакомы с внутренним устройством компьютера - выбирайте сканеры с подключением к параллельному порту - они немного медленнее, но проще устанавливаются. Если вам посчастливилось, и вы = обладатель компьютера последнего года выпуска с USB-шиной, то сканер на USB v порт для вас окажется более предпочтительным - он быстрее, чем сканер на LPT. Для тех, кто не боится самостоятельно установить SCSI-карточку, сканеры со SCSI-интерфейсом подойдут лучше всего.

    Офисные работы

    Сканеры для офиса должны быть рассчитаны на большой объем работ и лучше передавать цвета, так как в офисах стоят, как правило, более качественные цветные принтеры. Сканер должен позволять подключать слайд-адаптер, желательно также подключение автоподатчика документов. Для таких работ подходит серия Paragon Mustek, как сканеры начального уровня. Для создания и распечатки собственных красочных листовок и презентаций необходимы сканеры с лучшей цветопередачей - Umax Astra и Agfa Snap-Scan (Сканеры AGFA предоставляют более широкие возможности подготовленному оператору). Наиболее мощный сканер из этого класса - Umax Astra 2400S Plus, рассчитанный на большие объемы работ.

    Довольно большую популярность как во всем мире, так и у нас на рынке приобрели сканеры фирмы Hewlett-Packard. Они в большинстве своем стоят в различных офисах нашей страны, имея под собой довольно неплохие межгородские сервисы и мастерские по ремонту и обслуживанию. Наиболее популярными моделями для офисной работы можно считать ScanJet 5200C и ScanJet 6200C

    Сканеры для рекламных агентств

    Основные задачи для этих сканеров - качественное сканирование небольших объемов слайдов и бумажных оригиналов. Сканер должен обладать высоким разрешением (Для сканирования слайдов с выводом их на печать, форматом распечатанного изображения 10х15 см (формат стандартной фотографии) вам необходимо будет разрешение 1200 точек на дюйм, а для распечатывания слайда на формат А4 - уже 2400 точек на дюйм.), а также хорошим динамическим диапазоном. (Для сканирования фотографий необходим диапазон 2.3D, для слайдов необходим диапазон оптических плотностей больший, чем 2.8-3.0 D, а для негативов больший, чем 3.3 D.) Наиболее дешевые сканеры в этом классе - Agfa Duoscan T1200 с отличным качеством, но невысоким разрешением 600х1200 точек на дюйм, и Mustek Paragon Power Pro с хорошим разрешением 1200х2400 точек на дюйм, но с невысоким динамическим диапазоном, - для фирм, которые не могут позволить себе значительные финансовые затраты. Для более требовательных пользователей подойдут сканеры AGFA Duoscan и Umax PowerLook III, HP ScanJet 6350C с хорошей цветопередачей и динамическим диапазоном (3.4D) и с высоким разрешением (1000х2000 и 1200х2400 соответственно).

    Сканирование большого количества слайдов

    Для сканирования больших объемов слайдов необходимы сканеры с теми же характеристиками, что и у предыдущей группы, но большего формата - А3. На стекле такого сканера располагаются сразу несколько слайдов, которые сканируются в пакетном режиме. Если вам не нужно большое разрешение сканера, то идеальным выбором для вас в этой группе будет сканер Mirage IIse. Сканер AGFA Duoscan T2000XL с большим разрешением 2000х2000 точек на дюйм подойдет вам в случае если необходимо увеличивать сканированные слайды на формат близкий к А4. Довольно неплохое предложение на рынке имеет для этого типа работ и компания Hewlett-Packard, которая представляет на рынке свою модель - Photo Scanner S20, которая по мнению автора неплохо оптимизирована под работу с 35 мм негативами.

    Сканирование слайдов большого формата

    Сканирование рентгеновских снимков, материалов дефектоскопии и аэросъемки. Здесь представлены сканеры с невысоким разрешением, но с хорошим качеством цветопередачи и с высоким динамическим диапазоном. Это Mustek Paragon A3 Pro c разрешением 600х1200 и Umax Mirage IIse с разрешением 700х1400 точек на дюйм.

    Сканеры для Полиграфии

    Для этих задач сканеры должны обладать высочайшими характеристиками, и выбор сканера должен определяться в большей степени ценой, которую вы готовы потратить на него. Наиболее простой сканер в данной категории - AGFA Duoscan T2500 c разрешением 2500 точек на дюйм. Более мощная модель Umax PowerLook 3000 с разрешением 3048х3048. И две модели AGFA А3 формата - AgfaScan 5000 с разрешением 2500х5000 и AgfaScan XY-15 с разрешением 5000х5000 на полном А3+ формате.

    Напоследок хочется дать некоторые советы, при покупке данного устройства:

  • Не стоит забывать, что с любым сканером все прикладные программы взаимодействуют посредством "драйвера", и что это единственный интерфейс, которым возможно задавать параметры для сканирования изображения. Функциональность и возможности драйвера во многом определяют возможности, получаемые пользователем от сканера. Поэтому важно, чтобы фирма-производитель с достаточной серьезностью относилась к разработке "драйверов" для своих сканеров, а о возможностях драйверов лучше узнать еще до покупки сканера у поставщика либо на сайте производителя, возможно, нелишним окажется послушать "бывалых" полиграфистов. Часто забывают, что без "родного" драйвера (если он не работает под нужной ОС сейчас или не удастся найти новую версию драйвера через год, с выходом Windows 2000) сканер не может работать вообще.
  • Заявления продавца о том, что в его сканере есть нечто, чего нет у других (стеклянная оптика, особенно хорошее "цейссовское" верхнее стекло, встроенное в сканер выделение букв и подавление помех и прочие правдивые или бредовые вещи), вполне может иметь под собой почву, но используйте здравый смысл и задайте себе два простых вопроса:
  • Если все настолько хорошо, почему в мире еще продаются другие сканеры?
  • Если это действительно такое важное преимущество, почему производитель не пишет об этом огромными буквами на коробке сканера, в рекламе и Интернете?

    И еще: при транспортировке сканера не забывайте ставить специальную заглушку, в режим закрыто, а то иначе так и будете ездить между сервис-центром и домом.

    Вот, кажется, на первый раз и все. Да, и последнее: один мой знакомый накопил дома кучу разного компьютерного железа - видеокарт, процессоров, звуковых карточек, - продал он это и купил себе сканерочек. Уважаемый читатель, загляните к себе в кладовку, может там лежит ваш еще не купленный сканер. Так что думайте, решайте, ищите! Выбор за вами.